- Prove that $\dfrac{\tan \theta+\cot \theta}{\sec \theta+\operatorname{cosec} \theta}=\dfrac{1}{\sin \theta+\cos \theta}$
- Prove that $\quad \sec x \csc x-\cot x=\tan x$.
- Prove that $\dfrac{1}{1-\cos x}+\dfrac{1}{1+\cos x}=2 \csc^{2} x$
- Show that $\dfrac{\tan \theta+\cot \theta}{\csc \theta}=\sec \theta$
- Show that $\sqrt{\sec ^{2} \theta-1}+\sqrt{\csc^{2} \theta-1}=\sec \theta \csc \theta$
- Prove that $\sec ^{2} x+\csc^{2} x=\sec ^{2} x \csc^{2} x$
- Show that $\dfrac{1}{\csc \theta-1}-\dfrac{1}{\csc \theta+1}=2 \tan ^{2} \theta$
- Show that $\dfrac{\csc \theta}{\csc \theta-\sin \theta}=\sec ^{2} \theta$.
- Prove that $\dfrac{\cos x}{1+\tan x}-\dfrac{\sin x}{1+\cot x}=\cos x-\sin x$.
- Show that $\csc \theta-\sin \theta=\cot \theta \cos \theta$.
- Show that $\dfrac{\tan ^{2} \theta+\sin ^{2} \theta}{\cos \theta+\sec \theta}=\tan \theta \sin \theta$.
- Prove that $\sin x(\cot x+\tan x)=\sec x$
- Show that $\dfrac{\sec \theta}{\cot \theta+\tan \theta}=\sin \theta$.
- Show that $\dfrac{\sin x}{1+\cos x}+\dfrac{1+\cos x}{\sin x}=2 \csc x$.
- Show that $\dfrac{(1-\sin A)(1+\sin A)}{\sin A \cos A}=\cot A$.
- Show that $\cos \theta \cot \theta+\sin \theta=\csc \theta$.
- Show that $2 \cos x \cot x+1=\cot x+2 \cos x$ can be written in the form $(a \cos x-b)(\cos x-\sin x)=0$, where $a$ and $b$ are constants to be found.
Sunday, July 25, 2021
Subscribe to:
Post Comments (Atom)
0 Reviews:
Post a Comment