Similarity of Triangles
Two triangles whose corresponding angles are equal and whose corresponding sides are proportional are said to be similar.
လိုက်ဖက်ထောင့်များ တူညီပြီး လိုက်ဖက်အနားများ အချိုးညီသော တြိဂံနှစ်ခုကို သဏ္ဌာန်တူ တြိဂံများဟုခေါ်သည်။
Exercise (8.3)
- Use the given information to tell whether each pair of triangles is similar. Give a reason for each answer.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
- In each of the following triangles, the lengths of certain segments are marked. Find the value of $x$, $y$, $z$, $w$ and $v$.
(a)
(b)
(c)
- Find the marked lengths in each of the figures.
(a)
(b)
(c)
(d)
(e) - In the figure, $X Y \parallel P R$ and $V T \parallel Q R$. If $\displaystyle \frac{P T}{T R}=\displaystyle \frac{3}{2}, \displaystyle \frac{Q Y}{Y R}=\displaystyle \frac{2}{1}$ and $P Q=15 \mathrm{~cm}$, calculate
(a) the lengths of $P V, P X$ and $X V$.
(b) the numerical values of $\displaystyle \frac{Y W}{W X}$ and $\displaystyle \frac{V W}{Q Y}$.
- Given: Parallelogram $B I R D$,
$I G$ bisects $\angle B I R$
Prove: $\displaystyle\frac{B E}{E I}=\frac{R G}{G I}$
- Given : $R Q \perp P Q$
$P Q \perp P T$
$S T \perp P R$
Prove: $S T \cdot R Q=P S \cdot P Q$
- Given : Parallelogram $A B C D$ ; $P Q \parallel M B$
Prove : $\triangle A B M \sim \triangle C Q P$ .
- $\triangle A B C$ and $\triangle C A D$ are drawn on opposite sides of AC such that $A B: B C: C A=C A: A D: D C$ Prove that $D C \parallel A B$.
0 Reviews:
Post a Comment