- Simplify the following.
(a) $3 \sqrt{5}+7 \sqrt{5}$
(b) $\sqrt{75}-\sqrt{12}$
(c) $3 \cdot 3 \sqrt{3} \cdot 3 \sqrt{27}$
(d) $2 \sqrt{5} \cdot 3 \sqrt{2}$
(e) $(4-\sqrt{3})^{2}$
(f) $(\sqrt{3}+2 \sqrt{2})(\sqrt{3}+\sqrt{2})$
(g) $(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})(\sqrt{x}+1)(\sqrt{x}-1)$
(h) $\sqrt{75}-\dfrac{3}{4} \sqrt{48}-5 \sqrt{12}$
(i) $\sqrt{2 x^{2}}+5 \sqrt{32 x^{2}}-2 \sqrt{98 x^{2}}$
(j) $\sqrt{20 a^{3}}+a \sqrt{5 a}+\sqrt{80 a^{3}}$
-
Rationalise the denominators and simplify.
(a) $\dfrac{2}{\sqrt{5}}$
(b) $\dfrac{5}{2+\sqrt{3}}$
(c) $\dfrac{12}{\sqrt{5}-\sqrt{3}}$
(d) $\dfrac{\sqrt{2}+1}{2 \sqrt{2}-1}$
(e) $\dfrac{\sqrt{7}+3 \sqrt{2}}{\sqrt{7}-\sqrt{2}}$
(f) $\dfrac{\sqrt{17}-\sqrt{11}}{\sqrt{17}+\sqrt{11}}$
(g) $\dfrac{1}{2 \sqrt{2}-\sqrt{3}}$
(h) $\dfrac{\sqrt{6}+1}{3-\sqrt{5}}$
-
Write as a single fraction.
(a) $\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}$
(b) $\dfrac{2}{\sqrt{7}+\sqrt{2}}+\dfrac{1}{\sqrt{7}-\sqrt{2}}$
(c) $\dfrac{1}{3+\sqrt{3}}+\dfrac{1}{\sqrt{3}-3}+\dfrac{1}{\sqrt{3}}$
(d) $\dfrac{7+\sqrt{5}}{7-\sqrt{5}}+\dfrac{\sqrt{11}-3}{\sqrt{11}+3}$
(e) $\dfrac{3+2 \sqrt{2}}{(\sqrt{3}-1)^{2}}$
(f) $\sqrt{\dfrac{x+1}{x-1}}+\sqrt{\dfrac{x-1}{x+1}}-\sqrt{\dfrac{1}{x^{2}-1}}$
(g) $\sqrt{\dfrac{\sqrt[5]{32}+\sqrt{4}}{2^{-2}-2^{-3}}}$
Showing posts with label new syllabus. Show all posts
Showing posts with label new syllabus. Show all posts
Monday, November 29, 2021
Saturday, August 7, 2021
Grade 10: Exercise (4.6) - Solution
August 07, 2021
TargetMathematics
chapter-4, functions, grade 10, new syllabus, one to one function, problems and solutions, သင်ရိုးသစ်
No comments
Edit
A real valued function is one-to-one if every horizontal line intersects the graph of the function at most one point.
- Determine whether each of the following function is a one-to-one function or not. If it is not one-to-one, explain why not.
- Draw the graph of the each given function and determine whether each is a one-to-one function or not.
(a) $f(x)=3 x+2$
$\begin{array}{|c||c|c|c|c|c|c|c|} \hline x & \ldots & -2 & -1 & 0 & 1 & 2 & \ldots \\ \hline f(x) & \cdots & -4 & -1 & 2 & 5 & 8 & \ldots \\ \hline \end{array}$
It is a one to one function.
(b) $f(x)=x-3$
$\begin{array}{|c||c|c|c|c|c|c|c|} \hline x & \ldots & -2 & -1 & 0 & 1 & 2 & . \\ \hline f(x) & \cdots & -5 & -4 & -3 & 2 & 1 & \cdots \\ \hline \end{array}$
It is a one to one function.
(c) $f(x)=4 x^{2}$
$\begin{array}{|c||c|c|c|c|c|c|c|} \hline x & \cdots & -2 & -1 & 0 & 1 & 2 & \cdots \\ \hline f(x) & \cdots & 16 & 4 & 0 & 4 & 16 & \cdots \\ \hline \end{array}$
It is not a one to one function.
(d) $f(x)=2|x|$
$\begin{array}{|c||c|c|c|c|c|c|c|} \hline x & \cdots- & -2 & -1 & 0 & 1 & 2 & \cdots \\ \hline f(x) & \cdots & 4 & 2 & 0 & 2 & 4 & \cdots \\ \hline \end{array}$
It is not a one to one function.
(e) $f(x)=\dfrac{2 x+3}{x+2}$
$\begin{aligned} f(x) &=\dfrac{2 x+3}{x+2} \\\\ &=\dfrac{2 x+4-1}{(x+2)} \\\\ &=\dfrac{-1+2(x+2)}{(x+2)} \\\\ &=\dfrac{-1}{x+2}+2\\\\ &\text { horizontal arymptote: } y=2 \\\\ &\text { vertical asymptote : } x=-2 \\\\ &x=0, y=\frac{3}{2} \\\\ &y \text { -intercept }=\left(0, \frac{3}{2}\right) \\\\ &y=0, x=-\frac{3}{2} \\\\ &x \text { -intercept }=\left(-\frac{3}{2}, 0\right) \end{aligned}$
It is a one to one function.
(f) $f(x)=4 x^{2}\quad (0 \le x \le 4)$
$\begin{array}{|c||c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 0 & 4 & 16 & 36 & 64 \\ \hline \end{array}$
It is a one to one function.
(g) $f(x)=\sqrt{x}\quad (x \ge 0)$
$\begin{array}{|c||c|c|c|c|c|c|} \hline x & 0 & 1 & 4 & 9 & 25 & \ldots \\ \hline f(x) & 0 & 1 & 2 & 3 & 5 & \cdots \\ \hline \end{array}$
It is a one to one function.
(a) It is a one to one function.
(b) It is not a one to one function because some horizontal lines intersect the graph of the function more than one point.
(c) It is a one to one function.
(d) It is not a one to one function because some horizontal lines intersect the graph of the function more than one point.
(c) It is a one to one function.
(c) It is a one to one function.
Subscribe to:
Posts (Atom)