The sum to $n$ terms of an A.P. is $35$. The common difference is $2$ and the sum to $2 n$ terms is 120 . Find the first term.
$\begin{aligned}
\text{In an A.P.,} &\\\\
d &=2, \\\\
S_{n} &=35 \\\\
\dfrac{n}{2}\{2 a+(n-1) 2\} &=35 \\\\
\dfrac{n}{2} \times 2\{a+n-1\} &=35 \\\\
a n+n^{2}-n &=35\ldots(1) \\\\
S_{2 n} &=120 \\\\
\dfrac{2 n}{2}\{2 a+(2 n-1) 2\} &=120 \\\\
n \times 2\{a+2 n-1\} &=120 \\\\
a n+2 n^{2}-n &=60\ldots(2) \\\\
(2)-(1), & \\\\
n^{2} &=25 \\\\
n &=5 \\\\
\text { Substituting } n &=5 \text { in equation (1), } \\\\
5 a+25-5 &=35 \\\\
5 a &=15 \\\\
a &=3
\end{aligned}$
An A.P., with first term 8 and common difference $d$, consists of 101 terms. Given that the sum of the last three terms is 3 times the sum of the first three terms, find the value of $d$.
In an AP, first term $=a=8$
common difference $=d$
By the problem,
$\begin{aligned}
u_{99}+u_{100}+u_{101} &=3\left(u_{1}+u_{2}+u_{3}\right) \\\\
a+98 d+a+99 d+a+100 d &=3(a+a+d+a+2 d) \\\\
3 a+297 d &=9 a+9 d \\\\
288 d &=6 a \\\\
d &=\dfrac{6}{288}(8) \\\\
&=\dfrac{1}{6}
\end{aligned}$
The sum of the first $n$ terms of an A.P. $3,5 \dfrac{1}{2}, 8, \ldots$ is equal to the $2 n^{\text {th }}$ term of the A.P $16 \dfrac{1}{2}, 28 \dfrac{1}{2}, 40 \dfrac{1}{2}, \ldots .$ Calculate the value of $n$.
$\begin{aligned}
3,\ 5\dfrac{1}{2},\ & 8,\ \ldots \text { is an A.P. } \\\\
a &=3 \\\\
d &=5 \dfrac{1}{2}-3 \\\\
&=2 \dfrac{1}{2} \\\\
&=\dfrac{5}{2} \\\\
S_{n} &=\dfrac{n}{2}\{2 a+(n-1) d\} \\\\
&=\dfrac{n}{2}\left\{6+(n-1) \dfrac{5}{2}\right\} \\\\
&=\dfrac{n}{4}\{12+5 n-5\} \\\\
&=\dfrac{5 n^{2}+7 n}{4}\\\\
16 \dfrac{1}{2},\ & 28 \dfrac{1}{2},\ 40 \dfrac{1}{2},\ \ldots \text { is an A.P. } \\\\
a&=16 \dfrac{1}{2}\\\\
&=\dfrac{33}{2} \\\\
d &=28 \dfrac{1}{2}-16 \dfrac{1}{2}\\\\
&=12 \\\\
u_{2 n} &=a+(2 n-1) d \\\\
&=\dfrac{33}{2}+(2 n-1) 12 \\\\
&=24 n+ \dfrac{9}{2}\\\\
\text{By the } & \text{problem},\\\\
\dfrac{5 n^{2}+7 n}{4}&=24 n+\dfrac{9}{2}\\\\
5 n^{2}+7 n &=96 n+18 \\\\
5 n^{2}-89 n-18 &=0 \\\\
(5 n+1)(n-18) &=0 \\\\
n=-\dfrac{1}{5} \text { or } n &=18 \\\\
\text { Since }-\dfrac{1}{5} & \notin N, \\\\
n &=18
\end{aligned}$
The sum of the first $n$ terms of a certain sequence is given by $S_{n}=n^{2}+2 n$. Find the first 3 terms of the sequence and express the $n^{\text {th }}$ term in terms of $n$.
$\begin{aligned}
S_{n} &=n^{2}+2 n \\\\
S_{1} &=1^{2}+2(1)=3 \\\\
S_{2} &=2^{2}+2(2)=8 \\\\
S_{3} &=3^{2}+2(3)=15 \\\\
\text {Since } u_{n} &=S_{n}-S_{n-1}, \\\\
u_{1} &=S_{1}=3 \\\\
u_{2} &=S_{2}-S_{1}=5\\\\
u_{3} &=S_{3}-S_{2}=15-8=7\\\\
\text { Since }\\\\
u_{2}-u_{1} &=5-3=2 \text { and } \\\\
u_{3}-u_{2} &=7-5=2,\\\\
\text{the terms } & \text{are in A.P., with}\\\\
a=3 \text { and } & d =2 \\\\
u_{n} &=a+(n-1) d \\\\
&=3+(n-1) 2 \\\\
&=3+ 2n-2 \\\\
&=2 n+1
\end{aligned}$
If the sum of $n$ terms of a certain sequence is $2 n+3 n^{2}$, find the $n^{\text {th }}$ term. Hence show that this sequence is an arithmetic progression.
$\begin{aligned}
S_{n} &=2 n+3 n^{2} \\\\
u_{n} &=S_{n}-S_{n-1} \\\\
&=2 n+3 n^{2}-2(n-1)-3(n-1)^{2} \\\\
&=2 n+3 n^{2}-(2 n-2)-3\left(n^{2}-2 n+1\right) \\\\
&=2 n+3 n^{2}-2 n+2-3 n^{2}+6 n-3 \\\\
&=4 n-1 \\\\
u_{n-1} &=S_{n-1}-S_{n-2} \\\\
&=2(n-1)+3(n-1)^{2}-2(n-2)-3(n-2)^{2} \\\\
&=2 n-2+3\left(n^{2}-2 n+1\right)-2 n+4-3\left(n^{2}-4 n+4\right) \\\\
&=2 n-2+3 n^{2}-6 n+3-2 n+4-3 n^{2}+12 n-12 \\\\
&=4 n-7\\\\
u_{n}-u_{n-1} &=4 n-1-(4 n-7) \\\\
&=6
\end{aligned}$
Since the difference of two consicutive terms is constant, the sequence is an A.P.
The sum of $n$ terms of two arithmetic progressions are in the ratio $(3 n+8) \vdots(7 n+$ 15). Find the ratio of their $12^{\text {th }}$ terms.
Let the st term and the common difference of $1^{\text{st}}$ A.P be $a$ and
$d$ and those of $2^{\text{nd}}$ A.P be $A$ and $D$,
For $1^{\text{st}}$ A.P.,
$S_{n}=\dfrac{n}{2}\{2 a+(n-1) d\}$
For $2^{\text{nd}}$ A.P.,
$S_{n}=\dfrac{n}{2}\{2 A+(n-1) D\}$
By the problem,
$\begin{aligned}
\dfrac{\dfrac{n}{2}\{2 a+(n-1) d\}}{\dfrac{n}{2}\{2 A+(n-1) D\}}&=\dfrac{3 n+8}{7 n+15}\\\\
\text { When } n=23,\hspace{2 cm} & \\\\
\dfrac{2 a+22 d}{2 A+22 D}&=\dfrac{77}{176}\\\\
\dfrac{a+11d}{A+11 D}&=\dfrac{7}{16}\\\\
\therefore\ \dfrac{12^{\text {th }} \text { term of } 1^\text {st} \text {A.P}}{12^{\text {th }} \text { term of } 2^\text{nd} \text { A.P}}&=\dfrac{7}{16}
\end{aligned}$
An A.P. contains $30$ terms. Given that the $10^{\text {th }}$ term is $21$ and that the sum of the last $10$ terms is $675$ , find the sum of the first $10$ terms.
If $S_{1}, S_{2}, S_{3}$ be sums to $n, 2 n, 3 n$ terms of an arithmetic progression, Show that $S_{3}=3\left(S_{2}-S_{1}\right)$.
Let the first term and the common difference of given A.P. be $a$ and $d$ respectively.
$\begin{aligned}
\therefore\ S_{1} &=\dfrac{n}{2}\{2 a+(n-1) d\} \\\\
S_{2} &=\dfrac{2 n}{2}\{2 a+(2 n-1) d\} \\\\
S_{3} &=\dfrac{3 n}{2}\{2 a+(3 n-1) d\} \\\\
S_{2}-S_{1} &=\dfrac{2 n}{2}\{2 a+(2 n-1) d\}-\dfrac{n}{2}\{2 a+(n-1) d\} \\\\
&=\dfrac{n}{2}\{4 a+4 n d-2 d-2 a-n d+d\} \\\\
&=\dfrac{n}{2}\{2 a+3 n d-d\} \\\\
&=\dfrac{n}{2}\{2 a+(3 n-1) d\} \\\\
3\left(S_{2}-S_{1}\right) &=\dfrac{3 n}{2}\{2 a+(3 n-1) d\} \\\\
\therefore\ S_{3} &=3\left(S_{2}-S_{1}\right)
\end{aligned}$
In an A.P., if $p^{\text {th }}$ term is $\dfrac{1}{q}$ and $q^{\text {th }}$ term is $\dfrac{1}{p}$, prove that the sum of first $p q$ terms is $\dfrac{1}{2}(p q+1)$, where $p \neq q$.
$\begin{aligned}
\text{In an A.P,}&\\\\
u_{p} &=\dfrac{1}{q} \\\\
a+(p-1) d &=\dfrac{1}{q}-(1) \\\\
u_{q} &=\dfrac{1}{p} \\\\
a+(q-1) d &=\dfrac{1}{p}\\\\
(1)-(2), & \\\\
(p-q) d &=\dfrac{1}{q}-\dfrac{1}{p} \\\\
(p-q) d &=\dfrac{p-q}{p q} \\\\
d &=\dfrac{1}{p q}\\\\
\end{aligned}$
$\begin{aligned}
\text{Substituting } d&=\dfrac{1}{q-p} \text{ in equation} (1),\\\\
a+\dfrac{p-1}{p q} &=\dfrac{1}{q} \\\\
a &=\dfrac{1}{q}-\dfrac{p-1}{p q} \\\\
&=\dfrac{p-p+1}{p q} \\\\
&=\dfrac{1}{p q}\\\\\
\therefore\ S_{p q} &=\dfrac{p q}{2}\{2 a+(p q-1) d\} \\\\
&=\dfrac{p q}{2} \left\{\dfrac{2}{p q}+(p q-1) \dfrac{1}{p q}\right\} \\\\
&=1+\dfrac{1}{2}(p q-1) \\\\
&=\dfrac{1}{2} p q+1-\dfrac{1}{2}=\dfrac{1}{2} p q+\dfrac{1}{2} \\\\
&=\dfrac{1}{2}(p q+1)
\end{aligned}$
Thus, the sum of first $p q$ terms of the A.P. is $\dfrac{1}{2}(p q+1)$
An arithmetic progression has third term $90$ and fifth term $80$.
(a) Find the first term and the common difference.
(b) Find the value of $m$ given that the sum of the first $m$ terms is equal to the sum of the first $(m+1)$ terms.
(c) Find the value of $n$ given that the sum of the first $n$ terms is zero.
$\begin{aligned}
\text{ (a) In an A.P.,} \hspace{2cm}&\\\\
u_{3} &=90 \\\\
a+2 d &=90\ldots(1) \\\\
u_{5} &=80 \\\\
a+4 d &=80\ldots(2) \\\\
(2)-(1), & \\\\
2 d &=-10 \\\\
\therefore\ d &=-5\\\\
\text { Substituting } d &=-5 \text { in equation }(1), \\\\
a-10 &=90 \\\\
\therefore a &=100 \\\\
\text{ (b) }\hspace{3.5 cm} S_m &=S_{m+1} \\\\
m\{200+(m-1)(-5)\} &=(m+1)\{200+m(-5)\} \\\\
m\{200+(m-1)(-5)\} &=(m+1)\{200+m(-5)\} \\\\
m\{200-5 m+5\} &=(m+1)\{200-5 m\} \\\\
m(205-5 m) &=(m+1)(200-5 m) \\\\
205 m-5 m^{2} &=200 m-5 m^{2}+200-5 m \\\\
m &=20
\end{aligned}$
An arithmetic progression contains $25$ terms and the first term is $-15$. The sum of all the terms in the progression is $525$. Calculate
(a) the common difference of the progression,
(b) the last term in the progression,
(c) the sum of all the positive terms in the progression.
$\begin{aligned}
\text{(a) In an A.P.,}&\\\\
a &=-15 \\\\
a+12 d &=21 \\\\
S_{25} &=525 \\\\
\dfrac{25}{2}\{2 a+2 y d\} &=525 \\\\
-15+12 d &=21 \\\\
12 d &=36 \\\\
d &=3
\text{(b) Last term} =u_{25}\\\\
&=a+2 y d \\\\
&=-15+72 \\\\
&=57
\end{aligned}$
Let the last non-positive term be $u_{n}$.
$\begin{aligned}
\therefore u_{n} & \le 0 \\\\
-15+(n-1) 3& \le0 \\\\
(n-1) 3 &\le15 \\\\
n-1 & \le 5\\\\
n & \le6 \\\\
\therefore\ u_{6} & \text{ is the last non-positive term.}\\\\
\therefore\ u_{7} &=u_{6}+3=3\\\\
\therefore\ u_{7} & \text{ is the first positive term.}\\\\
\therefore\ \text { required sum } &=u_{7}+u_{8}+\ldots+u_{25} \\\\
&=\dfrac{19}{2}\{3+57\} \\\\
&=570
\end{aligned}$
If the sum of $n$ terms of an A.P. is $n P+\dfrac{1}{2} n(n-1) Q$, where $P$ and $Q$ are constants, find the common difference.
$\begin{aligned}
\text{In an A.P.,}&\\\\
S_{n} &=n P+\dfrac{1}{2} n(n-1) 2 \\\\
S_{1} &=P+\dfrac{1}{2}(1-1) Q=P \\\\
S_{2} &=2 P+\dfrac{1}{2}(2)(2-1) Q \\\\
&=2 P+Q
\end{aligned}$
Let the common difference be $d$.
$\begin{aligned}
\therefore d &=u_{2}-u_{1} \\\\
&=S_{2}-S_{1}-S_{1} \\\\
&=S_{2}-2 S_{1} \\\\
&=2 P+Q - 2 P \\\\
&=Q
\end{aligned}$
If the sum of first $p$ terms of an A.P. is equal to the sum of the first $q$ terms where $p \neq q$, then find the sum of the first $(p+q)$ terms.
$\begin{aligned}
S_p&=S_q, \quad (p\ne q)\\\\
\dfrac{p}{2}\left\{2 a+(p-1) d\right\} &=\dfrac{q}{2}\left\{2 a+(q-1) d\right\} \\\\
p\left\{2 a+(p-1) d\right\} &=q\left\{2 a+(q-1) d\right\} \\\\
2 a p+(p-1) p d &=2 a g+(q-1) q d \\\\
\left(p^{2}-p-q^{2}+q\right) d &=2 a q-2 a p \\\\
\left(p^{2}-q^{2}-p+q\right) d &=-2 a(p-q) \\\\
\left[(p-q)(p+q)-(p-q)\right] d &=-2 a(p-q)\\\\
(p-q)(p+q-1) d&=-2 a(p-q) \\\\
\quad \text { Since } p\ne q,\ & p-q=0. \\\\
\therefore\ (p+q-1) d&=-2 a \\\\
\therefore\ 2 a+(p+q-1) d&=0\\\\
\therefore\ S_{p+q}=\dfrac{p+q}{2}\{2 a +(p+q&-1) d\}=0 \\\\
\end{aligned}$
Prove that the sum of $n$ arithmetic means between two numbers is $n$ times the single A.M. between them.
Let $a$ and $b$ be two given numbers.
Let $x_{1}, x_{2}, x_{3}, \ldots x_{n}$, be A.M.s between a and b.
$\therefore \ a, x_{1}, x_{2}, x_{3}, \ldots x_{n}, b$ are in A.P.
$\begin{aligned}
a+x_{1}+x_{2}+x_{3}+\ldots+x_{n}+b&=\dfrac{n+2}{2}(a+b) \\\\
x_{1}+x_{2}+x_{3}+\ldots+x_{n} &=\dfrac{(n+2)(a+b)}{2}-(a+b)\\\\
&=(a+b)\left[\dfrac{n+2}{2}-1\right] \\\\
&=(a+b)\left[\dfrac{n+2-2}{2}\right]\\\\
&=\dfrac{n}{2}(a+b)\\\\
&=n\left(\dfrac{a+b}{2}\right)\\\\
&=n \text{ times the single A.M. between } a \text{ and } b
\end{aligned}$
The first term of an A.P. is $x$, the second term is $y$ and the last term is $z$. Show that the sum of the A.P. is $\dfrac{(y+z-2 x)(z+x)}{2(y-x)}$.
Let the comnon difference of given A.P. be $d$.
$\begin{aligned}
&u_{1}=x \\\\
&u_{2}=x+d \\\\
&y=x+d \\\\
&d=y-x \\\\
&u_{n}=x+(n-1) d \\\\
&z=x+(n-1) d \\\\
&n-1=\dfrac{z-x}{d} \\\\
&z-x\\\\
n &=\dfrac{z-x}{y-x}+1 \\\\
&=\dfrac{z-x+y-x}{y-x} \\\\
&=\dfrac{y+z-2 x}{y-x} \\\\
S_{n} &=\dfrac{n}{2}(x+z) \\\\
&=\dfrac{(y+z-2 x)(x+z)}{2(y-x)}
\end{aligned}$
The ratio of the sums of $m$ and $n$ terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ terms is $(2 m-1):(2 n-1)$.
In an A.P.,
$\dfrac{S_{m}}{S_{n}}=\dfrac{m^{2}}{n^{2}}$
Let $S_{m}=k m^{2}$ and $S_{n}=k n^{2}$.
Let $S_{m}=k m^{2}$ and $S_{n}=$ where $k$ is a constant.
$\begin{aligned}
u_{m} &=S_{m}-S_{m-1} \\\\
&=k m^{2}-k(m-1)^{2} \\\\
&=k m^{2}-k\left(m^{2}-2 m+1\right) \\\\
&=k m^{2}-k m^{2}+2 k m+k \\\\
&=k(2 m-1)\\\\
u_{n} &=S_{n}-S_{n-1} \\\\
&=k n^{2}-k(n-1)^{2} \\\\
&=k n^{2}-k\left(n^{2}-2 n+1\right) \\\\
&=k n^{2}-k n^{2}+2 k n-k \\\\
&=k(2 n-1) \\\\
\therefore\ \dfrac{u_{m}}{u_{n}} &=\dfrac{k(2 m-1)}{k(2 n-1)} \\\\
&=\dfrac{2 m-1}{2 n-1}
\end{aligned}$
The sum of three numbers in an A.P. is $12$ and the sum of their cubes is $408$. Find the numbers.
Let the three numbers be $x, y$ and $z$.
$\therefore x, y, z$, are in $A P$.
Let the common difference be $d$.
$\begin{aligned}
\therefore\ y =x+d \text { and } z&=x+2 d \\
x+y+z &=12 \\
3 x+3 d &=12 \\
x+d &=4 \\
\therefore\ x &=4-d\\
x^{3}+y^{3}+z^{3} &=408 \\
x^{3}+(x+d)^{3}+(x+2 d)^{3} &=408 \\
(4-d)^{3}+4^{3}+(4-d+2 d)^{3} &=408 \\
(4-d)^{3}+(4+d)^{3} &=344 \\
64-48 d+12 d^{2}-d^{3}+64+48 d+12 d^{2}+d^{3} &=344 \\
24 d^{2} &=216 \\
d^{2} &=9 \\
\therefore\ d &=\pm 3
\end{aligned}$
When $d=-3,\ x= 4-(-3) = 7$.
Hence, the numbers are $7,4$ and $1$.
When $d=3,\ x= 4-(3) = 1$.
Hence, the numbers are $1, 4$ and $7$.
0 Reviews:
Post a Comment