- Simplify the following.
(a) $3 \sqrt{5}+7 \sqrt{5}$
(b) $\sqrt{75}-\sqrt{12}$
(c) $3 \cdot 3 \sqrt{3} \cdot 3 \sqrt{27}$
(d) $2 \sqrt{5} \cdot 3 \sqrt{2}$
(e) $(4-\sqrt{3})^{2}$
(f) $(\sqrt{3}+2 \sqrt{2})(\sqrt{3}+\sqrt{2})$
(g) $(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})(\sqrt{x}+1)(\sqrt{x}-1)$
(h) $\sqrt{75}-\dfrac{3}{4} \sqrt{48}-5 \sqrt{12}$
(i) $\sqrt{2 x^{2}}+5 \sqrt{32 x^{2}}-2 \sqrt{98 x^{2}}$
(j) $\sqrt{20 a^{3}}+a \sqrt{5 a}+\sqrt{80 a^{3}}$
-
Rationalise the denominators and simplify.
(a) $\dfrac{2}{\sqrt{5}}$
(b) $\dfrac{5}{2+\sqrt{3}}$
(c) $\dfrac{12}{\sqrt{5}-\sqrt{3}}$
(d) $\dfrac{\sqrt{2}+1}{2 \sqrt{2}-1}$
(e) $\dfrac{\sqrt{7}+3 \sqrt{2}}{\sqrt{7}-\sqrt{2}}$
(f) $\dfrac{\sqrt{17}-\sqrt{11}}{\sqrt{17}+\sqrt{11}}$
(g) $\dfrac{1}{2 \sqrt{2}-\sqrt{3}}$
(h) $\dfrac{\sqrt{6}+1}{3-\sqrt{5}}$
-
Write as a single fraction.
(a) $\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}$
(b) $\dfrac{2}{\sqrt{7}+\sqrt{2}}+\dfrac{1}{\sqrt{7}-\sqrt{2}}$
(c) $\dfrac{1}{3+\sqrt{3}}+\dfrac{1}{\sqrt{3}-3}+\dfrac{1}{\sqrt{3}}$
(d) $\dfrac{7+\sqrt{5}}{7-\sqrt{5}}+\dfrac{\sqrt{11}-3}{\sqrt{11}+3}$
(e) $\dfrac{3+2 \sqrt{2}}{(\sqrt{3}-1)^{2}}$
(f) $\sqrt{\dfrac{x+1}{x-1}}+\sqrt{\dfrac{x-1}{x+1}}-\sqrt{\dfrac{1}{x^{2}-1}}$
(g) $\sqrt{\dfrac{\sqrt[5]{32}+\sqrt{4}}{2^{-2}-2^{-3}}}$
Monday, November 29, 2021
Subscribe to:
Post Comments (Atom)
0 Reviews:
Post a Comment