- Find the formula for $f^{-1}$ and state the domain of $f^{-1}$ when the function $f$ is given by
(a) $f(x)=2 x-3$
(b) $f(x)=1+3 x$
(c) $f(x)=1-x$
(d) $f(x)=\displaystyle\frac{x+9}{2}$
(e) $f(x)=\displaystyle\frac{1}{3}(4 x-5)$
(f) $f(x)=\displaystyle\frac{2 x+5}{x-7}$
(g) $f(x)=\displaystyle\frac{3}{x-2}$
(h) $f(x)=\displaystyle\frac{13}{2 x}$ - $A=\{x \mid x \geq 0, x \in \mathbb{R}\}$ and $g, h$ are functions from $A$ to $A$ defined by $g(x)=$ $2 x, h(x)=x^{2}$
(a) Find the formula for the inverse functions $g^{-1}, h^{-1}$.
(b) Evaluate $g^{-1}(7), h^{-1}(5)$. - Function $f$ is given by $f(x)=\displaystyle\frac{2 x-5}{x-3}$.
(a) State the value of $x$ for which $f$ is not defined.
(b) Find the value of $x$ for which $f(x)=0$.
(c) Find the inverse function $f^{-1}$ and state the domain of $f^{-1}$. - Function $f$ is given by $f(x)=\displaystyle\frac{x+a}{x-2}$ and that $f(7)=2$, find
(a) the value of $a$, and
(b) $f^{-1}(-4)$. - The function $f$ is given by $f(x)=4^{x}-2$.
(a) Find the value of $x$ for which $f(x)=0$.
(b) Find the inverse function $f^{-1}$ and state the domain of $f^{-1}$.
(c) If $f^{-1}(k)=2$, find the value of $k$.
Saturday, July 10, 2021
Subscribe to:
Post Comments (Atom)
0 Reviews:
Post a Comment