1. Write the following in radical form.
$\begin{array}{ll} \text{(a)}\quad (5)^{^{\tfrac{1}{2}}} & \text{(b)}\quad (-9)^{^{\tfrac{1}{3}}} \\\\ \text{(c)}\quad (2)^{^{-\frac{1}{2}}} & \text{(d)}\quad \left(-\displaystyle\frac{3}{4}\right)^{^{\tfrac{2}{5}}}\\\\ \text{(e)}\quad \left(\displaystyle\frac{2}{7}\right)^{^{\tfrac{5}{2}}} \end{array}$
$\begin{array}{ll} \text{(a)}\quad (5)^{^{\tfrac{1}{2}}} & \text{(b)}\quad (-9)^{^{\tfrac{1}{3}}} \\\\ \text{(c)}\quad (2)^{^{-\frac{1}{2}}} & \text{(d)}\quad \left(-\displaystyle\frac{3}{4}\right)^{^{\tfrac{2}{5}}}\\\\ \text{(e)}\quad \left(\displaystyle\frac{2}{7}\right)^{^{\tfrac{5}{2}}} \end{array}$
Show/Hide Solution
2. Write the following in fractional exponent form.
$\begin{array}{ll} \text{(a)}\quad \sqrt[6]{c^{^{5}}} & \text{(b)}\quad \sqrt[3]{-2} \\\\ \text{(c)}\quad \sqrt[5]{a^{^{4}} \sqrt[3]{b^{^{5}}}} & \text{(d)}\quad \sqrt[4]{\left(\displaystyle\frac{3}{7}\right)^{^{3}}} \end{array}$
$\begin{array}{ll} \text{(a)}\quad \sqrt[6]{c^{^{5}}} & \text{(b)}\quad \sqrt[3]{-2} \\\\ \text{(c)}\quad \sqrt[5]{a^{^{4}} \sqrt[3]{b^{^{5}}}} & \text{(d)}\quad \sqrt[4]{\left(\displaystyle\frac{3}{7}\right)^{^{3}}} \end{array}$
Show/Hide Solution
3. Change the expression with the same radical and simplify the radicands.
$\begin{array}{ll} \text{(a)}\quad 6 \sqrt{2} \quad& \text{(b)}\quad 3 a \sqrt[3]{x} \\\\ \text{(c)}\quad 2 \sqrt[5]{2} \quad& \text{(d)}\quad \sqrt[4]{\displaystyle\frac{1}{2}}\\\\ \text{(e)}\quad 3 \sqrt{x^{^{3}}} \end{array}$
$\begin{array}{ll} \text{(a)}\quad 6 \sqrt{2} \quad& \text{(b)}\quad 3 a \sqrt[3]{x} \\\\ \text{(c)}\quad 2 \sqrt[5]{2} \quad& \text{(d)}\quad \sqrt[4]{\displaystyle\frac{1}{2}}\\\\ \text{(e)}\quad 3 \sqrt{x^{^{3}}} \end{array}$
Show/Hide Solution
4. Simplify.
$\begin{array}{ll} \text{(a)}\quad \sqrt{32} & \text{(b)}\quad \sqrt[5]{-32} \\\\ \text{(c)}\quad \sqrt[4]{\displaystyle\frac{81 x^{^{16}}}{16 y^{^{4}}}} & \text{(d)}\quad \sqrt[3]{\displaystyle\frac{81 x^{^{2}}}{4 y}} \\\\ \text{(e)}\ \displaystyle\frac{9^{^{\tfrac{1}{2}}}}{\sqrt[3]{27}}& \text{(f)}\quad \sqrt{\displaystyle\frac{2}{3}} \cdot \sqrt{\displaystyle\frac{75}{98}}\\\\ \text{(g)}\quad \sqrt[3]{\displaystyle\frac{-216}{8 \times 10^{^{3}}}} & \text{(h)}\quad \sqrt[n]{\displaystyle\frac{32}{2^{^{5+n}}}} \end{array}$
$\begin{array}{ll} \text{(a)}\quad \sqrt{32} & \text{(b)}\quad \sqrt[5]{-32} \\\\ \text{(c)}\quad \sqrt[4]{\displaystyle\frac{81 x^{^{16}}}{16 y^{^{4}}}} & \text{(d)}\quad \sqrt[3]{\displaystyle\frac{81 x^{^{2}}}{4 y}} \\\\ \text{(e)}\ \displaystyle\frac{9^{^{\tfrac{1}{2}}}}{\sqrt[3]{27}}& \text{(f)}\quad \sqrt{\displaystyle\frac{2}{3}} \cdot \sqrt{\displaystyle\frac{75}{98}}\\\\ \text{(g)}\quad \sqrt[3]{\displaystyle\frac{-216}{8 \times 10^{^{3}}}} & \text{(h)}\quad \sqrt[n]{\displaystyle\frac{32}{2^{^{5+n}}}} \end{array}$
Show/Hide Solution
5. Rationalize the denominators.
$\begin{array}{ll} \text{(a)}\quad \displaystyle\frac{4 \sqrt{35}}{3 \sqrt{7}}\quad & \text{(b)}\quad \displaystyle\frac{20}{\sqrt{5}} \\\\ \text{(c)}\quad \displaystyle\frac{18}{\sqrt[3]{2}}\quad& \text{(d)}\quad \displaystyle\frac{\sqrt[3]{32}}{\sqrt[4]{27}} \\\\ \text{(e)}\quad \displaystyle\frac{\sqrt[3]{36 a^{^{2}}}}{\sqrt[3]{9 a}}\quad & \text{(f)}\quad \displaystyle\frac{\sqrt[3]{2}}{\sqrt[6]{12}} \\\\ \text{(g)}\quad \displaystyle\frac{1}{\sqrt[3]{x y^{^{2}}}}\quad & \text{(h)}\quad \sqrt[m]{{\displaystyle\frac{{2{{x}^{2}}{{y}^{{3m}}}}}{{9{{x}^{5}}{{y}^{{4m-1}}}}}}} \end{array}$
$\begin{array}{ll} \text{(a)}\quad \displaystyle\frac{4 \sqrt{35}}{3 \sqrt{7}}\quad & \text{(b)}\quad \displaystyle\frac{20}{\sqrt{5}} \\\\ \text{(c)}\quad \displaystyle\frac{18}{\sqrt[3]{2}}\quad& \text{(d)}\quad \displaystyle\frac{\sqrt[3]{32}}{\sqrt[4]{27}} \\\\ \text{(e)}\quad \displaystyle\frac{\sqrt[3]{36 a^{^{2}}}}{\sqrt[3]{9 a}}\quad & \text{(f)}\quad \displaystyle\frac{\sqrt[3]{2}}{\sqrt[6]{12}} \\\\ \text{(g)}\quad \displaystyle\frac{1}{\sqrt[3]{x y^{^{2}}}}\quad & \text{(h)}\quad \sqrt[m]{{\displaystyle\frac{{2{{x}^{2}}{{y}^{{3m}}}}}{{9{{x}^{5}}{{y}^{{4m-1}}}}}}} \end{array}$
Show/Hide Solution
6. Reduce the order as far as possible.
$\begin{array}{ll} \text{(a)}\quad \sqrt[4]{25} \quad& \text{(b)}\quad \sqrt[6]{4} \\\\ \text{(c)}\quad \sqrt[6]{8} \quad& \text{(d)}\quad \sqrt[9]{8 y^{^{3}}} \\\\ \text{(e)}\quad \sqrt[6]{27^{^{3}}} \quad& \text{(f)}\quad \sqrt[8]{a^{2} b^{^{4}}} \\\\ \text{(g)}\quad \sqrt[12]{64 a^{^{2}} b^{^{6}}} & \text{(h)}\quad (72)^{^{\tfrac{3}{5}}} \\\\ \text{(i)}\quad \sqrt[3]{768} \end{array}$
$\begin{array}{ll} \text{(a)}\quad \sqrt[4]{25} \quad& \text{(b)}\quad \sqrt[6]{4} \\\\ \text{(c)}\quad \sqrt[6]{8} \quad& \text{(d)}\quad \sqrt[9]{8 y^{^{3}}} \\\\ \text{(e)}\quad \sqrt[6]{27^{^{3}}} \quad& \text{(f)}\quad \sqrt[8]{a^{2} b^{^{4}}} \\\\ \text{(g)}\quad \sqrt[12]{64 a^{^{2}} b^{^{6}}} & \text{(h)}\quad (72)^{^{\tfrac{3}{5}}} \\\\ \text{(i)}\quad \sqrt[3]{768} \end{array}$
Show/Hide Solution
7. Find the simplified forms.
$\begin{array}{ll} \text{(a)}\quad \sqrt{\displaystyle\frac{9}{50}} \quad& \text{(b)}\quad \sqrt[3]{\displaystyle\frac{-192}{49}} \\\\ \text{(c)}\quad \sqrt[4]{16}\quad& \text{(d)}\quad 2 \sqrt[3]{56} \end{array}$
$\begin{array}{ll} \text{(a)}\quad \sqrt{\displaystyle\frac{9}{50}} \quad& \text{(b)}\quad \sqrt[3]{\displaystyle\frac{-192}{49}} \\\\ \text{(c)}\quad \sqrt[4]{16}\quad& \text{(d)}\quad 2 \sqrt[3]{56} \end{array}$
Show/Hide Solution
0 Reviews:
Post a Comment