Basic Trigonometric Identities
$\begin{array}{|l|} \hline \sin A=\displaystyle \frac{1}{\csc A}\ \text{and}\\ \csc A=\displaystyle \frac{1}{\sin A}\\ \cos A=\displaystyle \frac{1}{\sec A}\ \text{and}\\ \sec A=\displaystyle \frac{1}{\cos A}\\ \tan A=\displaystyle \frac{\sin A}{\cos A}\\ \tan A=\displaystyle \frac{1}{\cot A}\ \text{and}\\ \cot A=\displaystyle \frac{1}{\tan A}\\ \cot A=\displaystyle \frac{\cos A}{\sin A}\\ \hline\end{array}$
Pythagorean Identities
$\begin{array}{|l|} \hline \sin^2 A+ \cos^2 A=1\\ \tan^2 A+ 1=\sec^2 A\\ 1+ \cot^2 A=\csc^2 A\\ \hline\end{array}$
Trigonometric Ratios of Complementary Angles
$\begin{array}{|l|}\hline \sin \left(90^{\circ}-\alpha\right)=\cos \alpha\\ \cos \left(90^{\circ}-\alpha\right)=\sin \alpha\\ \tan \left(90^{\circ}-\alpha\right)=\cot \alpha\\ \cot \left(90^{\circ}-\alpha\right)=\tan \alpha\\ \sec \left(90^{\circ}-\alpha\right)=\csc \alpha\\ \csc \left(90^{\circ}-\alpha\right)=\sec \alpha\\ \hline \end{array}$
Prove the following identities.
(a) $\cos 2 \alpha=\sin 7 \alpha$
(b) $\tan 3 \alpha=\cot 2 \alpha$
(c) $\sec \alpha=\csc 5 \alpha$
Prove the following identities.
1. $\cot \theta \sqrt{1-\cos ^{2} \theta}=\cos \theta$
Show/Hide Solution
2. $\displaystyle \frac{\tan ^{2} \theta+1}{\tan \theta \csc ^{2} \theta}=\tan \theta$
Show/Hide Solution
3. $\left(1-\sin ^{2} \theta\right)\left(1+\cot ^{2} \theta\right)=\cot ^{2} \theta$
Show/Hide Solution
4. $\tan ^{2} \theta-\cot ^{2} \theta=\sec ^{2} \theta-\csc ^{2} \theta$
Show/Hide Solution
5. $\sin \theta \sec \theta \sqrt{\csc ^{2} \theta-1}=1$
Show/Hide Solution
6. $16 \sec ^{2} \theta+\csc ^{2} \theta=\sec ^{2} \theta \csc ^{2} \theta$
Show/Hide Solution
7. $\left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right)=1$
Show/Hide Solution
8. $(1+\tan \theta)^{2}+(1-\tan \theta)^{2}=2 \sec ^{2} \theta$
Show/Hide Solution
9. $\sec ^{2} \theta \cot ^{2} \theta-1=\cot ^{2} \theta$
Show/Hide Solution
10. $\displaystyle \frac{1}{1-\sin \theta}+\displaystyle \frac{1}{1+\sin \theta}=2 \sec ^{2} \theta$
Show/Hide Solution
11. $\displaystyle \frac{1}{\sin ^{2} \theta}-\displaystyle \frac{1}{\tan ^{2} \theta}=1$
Show/Hide Solution
12. $(\tan \theta+\sec \theta)^{2}=\displaystyle \frac{1+\sin \theta}{1-\sin \theta}$
Show/Hide Solution
13. $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$
Show/Hide Solution
14. $\displaystyle \frac{\tan ^{2} \theta+1}{\tan ^{2} \theta}=\csc ^{2} \theta$
Show/Hide Solution
15. $\sin ^{2} \theta \tan \theta+\cos ^{2} \theta \cot \theta+2 \sin \theta \cos \theta=\tan \theta+\cot \theta$
Show/Hide Solution
16. Find the value of acute angle $\alpha$ in each of the following equations:
(a) $\cos 2 \alpha=\sin 7 \alpha$
(b) $\tan 3 \alpha=\cot 2 \alpha$
(c) $\sec \alpha=\csc 5 \alpha$
Show/Hide Solution
17. Prove the identity $\cos \left(90^{\circ}-\alpha\right) \tan \left(90^{\circ}-\alpha\right)=\cos \alpha$
Show/Hide Solution
18. Prove the identity $\sin \left(90^{\circ}-\alpha\right) \sec \left(90^{\circ}-\alpha\right)=\cot \alpha$
Show/Hide Solution
0 Reviews:
Post a Comment