Thursday, June 25, 2009

Inequations

ဒီအခန္းမွာေတာ့ Quadratic Inequations ေတြရဲ့ ေပးထားေသာ အေျခအေနကို ေျပလည္ေစမယ့္ solution set ကိုရွာမွာ ျဖစ္ပါတယ္။ Quadratic Inequations ေတြကို မေျဖရွင္းမီ Quadratic Function ဆိုတာကို သိရပါမယ္။



Quadratic
Function

An expression f(x) = ax2 + bx + c, where a, b, and c are numbers with a0 is
called a quadratic function.

ကိန္းရွင္တစ္ခုရဲ့ ႏွစ္ထပ္ကိန္း ပါ၀င္ေသာ function တစ္ခုကို quadratic function လို႔ေခၚပါတယ္။ Quadratic Function ရဲ့ characteristic က x2 ပါ။ x2 မပါရင္ quadratic function လို႔ မေျပာႏိုင္ပါဘူး။ ဒါေၾကာင့္ coefficient of x2 ဟာ 0 မျဖစ္ရပါဘူး။




Quadratic Equation

ax2 + bx + c = 0 is called a quadratic equation.



Solutions or Roots of Quadratic Equation





where a0









Graph of a Quadratic Function


The graph of a quadratic function is called a parabola. It is basically a curved shape opening up or down.



Quadratic Function
တစ္ခုရဲ့ graph ကို parabola လို႔ေခၚပါတယ္။



When you have a quadratic function in the form f(x) = ax2 + bx + c

if a > 0, then the parabola opens up ,

coefficient of x2 ဟာ positive(a>0) ျဖစ္မယ္ဆိုရင္ graph ဆြဲတဲ့ အခါ open upward parabola ကိုရပါတယ္။

+x2 => open upward parabola







if a <0, then the parabola opens down

coefficient of x2 ဟာ positive(a<0) ျဖစ္မယ္ဆိုရင္ graph ဆြဲတဲ့ အခါ open downward parabola ကိုရပါတယ္။

- x2 =>open downward parabola



Quadratic Inequations

The open sentences ax2 + bx + c>0 and ax2 + bx + c<0,a 0 are quadratic inequations in x.

The solution set of the quadratic inequations in x can be found by

(i) Algebraic method

(ii) Graphical method


2 comments:

  1. f(x)=x^2+2xh+c^2 ကုိရွင္းရင္ ရမယ့္ညီမွ်ျခင္းကုိသိလုိပါတယ္...။
    quadratic ကုိသံုးမယ္ဆုိရင္ ေနာက္ဆံုးရမယ့္အေျဖက တူညီပါသလား..။
    ဒါမွမဟုတ္ x=-h+-sqrt(h^2-c^2) ကုိရပါသလား..။ ရွင္းျပေစခ်င္ပါ
    တယ္ခင္ဗ်ာ...။

    ReplyDelete
  2. x=-h+-sqrt(h^2-c^2)ရပါတယ္ ကိုအံ့မင္းညိဳ။ အေသးစိတ္ကို http://wwww.wolframalpha.comမွာ search လုပ္ႏိုင္ပါတယ္။ Program ေလးေတြထည့္ေပးခ်င္ေပမယ့္ ကြၽန္ေတာ္က programmer မဟုတ္ေတာ့ မေရးတတ္ဘူးဗ်ာ။ just user ပါပဲ။ ကိုအ့ံမင္းညိဳ ကူညီေပးႏိုင္ရင္ အတိုင္းအထက္ အလြန္ပါပဲ။

    ReplyDelete