1. Simplify by using the rules of exponents and name the rules used.
(a) $\displaystyle \frac{{36{{a}^{4}}{{b}^{5}}}}{{100{{a}^{7}}{{b}^{3}}}}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \frac{{36{{a}^{4}}{{b}^{5}}}}{{100{{a}^{7}}{{b}^{3}}}}\\ &=\displaystyle\frac{9}{{25}}\times \frac{1}{{{{a}^{{7-4}}}}}\times {{b}^{{5-3}}}\ \ \ \ \ (\text{Division Rule})\\ &=\displaystyle \frac{{9{{b}^{2}}}}{{25{{a}^{3}}}} \end{aligned}$
(b) $\displaystyle \frac{27 a^{2} b^{5}}{\left(9 a^{2} b\right)^{2}}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \frac{27 a^{2} b^{5}}{\left(9 a^{2} b\right)^{2}}\\ &=\displaystyle \frac{{27{{a}^{2}}{{b}^{5}}}}{{81{{a}^{4}}{{b}^{2}}}}\ \ \ \ \ (\text{Power of a Powar Rule})\\ &=\displaystyle \frac{1}{3}\times \frac{1}{{{{a}^{{4-2}}}}}\times {{b}^{{5-2}}}\ \ \ \ \ (\text{Division Rule})\\ &=\displaystyle \frac{{{{b}^{3}}}}{{3{{a}^{2}}}} \end{aligned}$
(c) $\displaystyle \left(\frac{-135 a^{4} b^{5} c^{6}}{315 a^{6} b^{7} c^{8}}\right)^{2}$
Show/Hide Solution
(d) $\displaystyle \left(\frac{x^{4}}{y^{5}}\right)^{3}\left(\frac{y^{3}}{x^{2}}\right)^{2}$
Show/Hide Solution
(e) $\displaystyle \frac{2^{3^{2}}}{\left(2^{2}\right)^{3}}$
Show/Hide Solution
2. Evaluate the followings.
0 Reviews:
Post a Comment