$ \displaystyle \begin{array}{l}\ \ \ \ \ \text{Since any image is the greatest integer,}\\\ \ \ \ \ \text{closure property is satisfied}\text{.}\\\\\therefore \ \ \ \odot \text{is a binary operation}\text{.}\end{array}$
$ \displaystyle \ \ \ \ \ \text{3}\odot 2=\text{the greatest integer less than}\ \left( {\frac{3}{2}+\frac{2}{3}} \right)$
$ \displaystyle \begin{array}{l}\therefore \ \ \ \text{3}\odot 2=\text{the greatest integer less than}\ \left( {2.167} \right)\\\\\therefore \ \ \ \text{3}\odot 2=2\end{array}$
$ \displaystyle \ \ \ \ \ \text{3}\odot 4=\text{the greatest integer less than}\ \left( {\frac{3}{4}+\frac{4}{3}} \right)$
$ \displaystyle \begin{array}{l}\therefore \ \ \ \text{3}\odot 4=\text{the greatest integer less than}\ \left( {2.083} \right)\\\\\therefore \ \ \ \text{3}\odot 4=2\ \ \end{array}$
$ \displaystyle \ \ \ \ \ 2\odot \left( {\text{3}\odot 4} \right)=2\odot 2=\ \text{the greatest integer less than}\ \left( {\frac{2}{2}+\frac{2}{2}} \right)$
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ \text{the greatest integer less than}\ 2\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ 1\ \ \ \ \end{array}$
$ \displaystyle \ \ \ \ y\odot x=\frac{{{{y}^{2}}+{{x}^{2}}}}{2}-yx$
$ \displaystyle \therefore \ \ y\odot x=\frac{{{{x}^{2}}+{{y}^{2}}}}{2}-xy$
$ \displaystyle \begin{array}{l}\therefore \ \ x\odot y=y\odot x\\\\\therefore \ \ \odot \ \text{is commutative}.\end{array}$
$ \displaystyle \ \ \ \ 1\odot 2=\frac{{{{1}^{2}}+{{2}^{2}}}}{2}-1(2)=\frac{1}{2}$
$ \displaystyle \ \ \ \ \left( {1\odot 2} \right)\odot 3=\frac{1}{2}\odot 3$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{{\left( {\frac{1}{2}} \right)}}^{2}}+{{3}^{2}}}}{2}-\frac{1}{2}(3)$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{25}}{8}$
$ \displaystyle \ \ \ \ 2\odot 3=\frac{{{{2}^{2}}+{{3}^{2}}}}{2}-2(3)=\frac{1}{2}$
$ \displaystyle \ \ \ \ 1\odot \left( {2\odot 3} \right)=1\odot \frac{1}{2}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{1}^{2}}+{{{\left( {\frac{1}{2}} \right)}}^{2}}}}{2}-1\left( {\frac{1}{2}} \right)$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{8}$
$ \displaystyle \begin{array}{l}\therefore \ \ \left( {1\odot 2} \right)\odot 3\ne 1\odot \left( {2\odot 3} \right)\\\\\therefore \ \ \odot \ \text{is not associative}.\end{array}$
$\displaystyle \ \ \ \ \therefore \ \ k=\frac{{10}}{3}$
$ \displaystyle \text {Cayley Table}$
⊕5 | 0 | 1 | 2 | 3 | 4 |
0 | 0 ⊕50 | 0 ⊕51 | 0 ⊕52 | 0 ⊕53 | 0 ⊕54 |
1 | 1 ⊕50 | 1 ⊕51 | 1 ⊕52 | 1 ⊕53 | 1 ⊕54 |
2 | 2 ⊕50 | 2 ⊕51 | 2 ⊕52 | 2 ⊕53 | 2 ⊕54 |
3 | 3 ⊕50 | 3 ⊕51 | 3 ⊕52 | 3 ⊕53 | 3 ⊕54 |
4 | 4 ⊕50 | 4 ⊕51 | 4 ⊕52 | 4 ⊕53 | 4 ⊕54 |
⊕5 | 0 | 1 | 2 | 3 | 4 |
0 | 0 | 2 | 4 | 1 | 3 |
1 | 1 | 3 | 0 | 2 | 4 |
2 | 2 | 4 | 1 | 3 | 0 |
3 | 3 | 0 | 2 | 4 | 1 |
4 | 4 | 1 | 3 | 0 | 2 |