‏إظهار الرسائل ذات التسميات Derivation. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات Derivation. إظهار كافة الرسائل

الثلاثاء، 5 فبراير 2019

a cos θ ± b sin θ = c နှင့် a sin θ ± b cos θ = c ညီမျှခြင်း ပုံသေနည်းများ ဖြစ်ပေါ်လာပုံ


$ \displaystyle a$ နဲ့ $ \displaystyle b$ ဟာ အပေါင်းကိန်း နှစ်ခုဖြစ်တယ် ဆိုပါစို့။ ၎င်း တို့ဟာ မျဉ်းပြတ်နှစ်ခုရဲ့ အလျားများ ဖြစ်တယ်လို့ သတ်မှတ်လိုက်မယ်။


အလျား $ \displaystyle a$ ယူနစ် ရှိတဲ့ မျဉ်းပြတ် နဲ့ အလျား $ \displaystyle b$ ယူနစ်ရှိတဲ့ မျဉ်းပြတ် တို့ဟာထောင့်မှန်တြိဂံ တစ်ခုရဲ့ ထောင့်မှန်ဆောင်အနားများဖြစ်ပြီး ထောင့်မှန်ခံအနားရဲ့ အလျားကတော့ $ \displaystyle R$ ယူနစ် ဖြစ်မယ်ဆိုရင် Pythagoras’ Theorem အရ…

$ \displaystyle \ \ \ \ \ \ R^2=a^2+b^2$

$ \displaystyle \therefore \ \ R= \sqrt{a^2+b^2}$ ဖြစ်ပါတယ်။

ထောင့်မှန်ခံအနား(hypotenuse) နဲ့ ထောင့်မှန်ဆောင်အနား(leg) တစ်ဖက် ကြားမှာရှိတဲ့ ထောင့်က $ \displaystyle \alpha$ ဖြစ်တယ်လို့ သတ်မှတ်ပါမယ်။ ဒါဆိုရင် …

$ \displaystyle \ \ \ \ \ \ a=R\cos\alpha$

$ \displaystyle \ \ \ \ \ \ b= R\sin\alpha$

$ \displaystyle \therefore \ \ \ \frac{b}{a}=\frac{{R\sin \alpha }}{{R\cos \alpha }}\ \Rightarrow \ \tan \alpha =\frac{b}{a}$ ဖြစ်ပါတယ်။

$ \displaystyle a$ နဲ့ $ \displaystyle b$ ဟာ အပေါင်းကိန်းများလို့ သတ်မှတ်ထားလို့ $ \displaystyle \alpha$ က ထောင့်ကျဉ်း (acute angle) အဖြစ်သာ ယူပါမယ်။

$ \displaystyle a\cos \theta +b\sin \theta =c$ ဆိုတဲ့ ညီမျှခြင်းရဲ့ $ \displaystyle a$ နဲ့ $ \displaystyle b$ နေရာမှာ အထက်မှာ သတ်မှတ်ခဲ့တဲ့ တန်ဖိုးတွေ အစားသွင်းလိုက်ရင် ...

$ \displaystyle \begin{array}{l}\ \ \ \ \ R\cos \theta \cos \alpha +R\sin \theta \sin \alpha =c\\\\\therefore \ \ \ R\left( {\cos \theta \cos \alpha +\sin \theta \sin \alpha } \right)=c\\\\\therefore \ \ \ R\cos \left( {\theta -\alpha } \right)=c\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline \therefore \ \ \ \sqrt{{{{a}^{2}}+{{b}^{2}}}}\cos \left( {\theta -\alpha } \right)=c \\ \hline \end{array}\end{array}\end{array}$

နောက်ထပ် ညီမျှခြင်းတွေကို ဆက်ပြီး အစားသွင်းကြည့်မယ်...။

$ \displaystyle \begin{array}{l}\ \ \ \ \ a\cos \theta -b\sin \theta =c\\\\\ \ \ \ \ R\cos \theta \cos \alpha -R\sin \theta \sin \alpha =c\\\\\therefore \ \ \ R\left( {\cos \theta \cos \alpha -\sin \theta \sin \alpha } \right)=c\\\\\therefore \ \ \ R\cos \left( {\theta +\alpha } \right)=c\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline \therefore \ \ \ \sqrt{{{{a}^{2}}+{{b}^{2}}}}\cos \left( {\theta +\alpha } \right)=c \\ \hline \end{array}\end{array}\end{array}$

$ \displaystyle \begin{array}{l}\ \ \ \ \ a\sin \theta +b\cos \theta =c\\\\\ \ \ \ \ R\sin \theta \cos \alpha +R\cos \theta \sin \alpha =c\\\\\therefore \ \ \ R\left( {\sin \theta \cos \alpha +\cos \theta \sin \alpha } \right)=c\\\\ \therefore \ \ \ R\sin \left( {\theta +\alpha } \right)=c\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline \therefore \ \ \ \sqrt{{{{a}^{2}}+{{b}^{2}}}}\sin \left( {\theta +\alpha } \right)=c \\ \hline \end{array}\end{array}\end{array}$

$ \displaystyle \begin{array}{l}\ \ \ \ \ a\sin \theta -b\cos \theta =c\\\\\ \ \ \ \ R\sin \theta \cos \alpha -R\cos \theta \sin \alpha =c\\\\\therefore \ \ \ R\left( {\sin \theta \cos \alpha -\cos \theta \sin \alpha } \right)=c\\\\\therefore \ \ \ R\sin \left( {\theta -\alpha } \right)=c\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline \therefore \ \ \ \sqrt{{{{a}^{2}}+{{b}^{2}}}}\sin \left( {\theta -\alpha } \right)=c \\ \hline \end{array}\end{array}\end{array}$

အချုပ်ဆိုရသော် ...

$ \displaystyle \text{Original Expression}$ $ \displaystyle \text{Combined Expression}$ $ \displaystyle \tan\alpha$
$ \displaystyle a\cos\theta +b\sin \theta =c$ $ \displaystyle \sqrt{{{{a}^{2}}+{{b}^{2}}}}\cos \left( {\theta -\alpha } \right)=c$ $ \displaystyle \tan \alpha =\frac{b}{a}$
$ \displaystyle a\cos\theta -b\sin \theta =c$ $ \displaystyle \sqrt{{{{a}^{2}}+{{b}^{2}}}}\cos \left( {\theta +\alpha } \right)=c$ $ \displaystyle \tan \alpha =\frac{b}{a}$
$ \displaystyle a\sin\theta +b\cos \theta =c$ $ \displaystyle \sqrt{{{{a}^{2}}+{{b}^{2}}}}\sin \left( {\theta +\alpha } \right)=c$ $ \displaystyle \tan \alpha =\frac{b}{a}$
$ \displaystyle a\sin\theta -b\cos \theta =c$ $ \displaystyle \sqrt{{{{a}^{2}}+{{b}^{2}}}}\sin \left( {\theta -\alpha } \right)=c$ $ \displaystyle \tan \alpha =\frac{b}{a}$


الخميس، 15 مارس 2012

Half-Angle Formulae - Derivation


$ \displaystyle \ \cos 2\alpha =1-2{{\sin }^{2}}\alpha $ ဆိုတာ သိခဲ့ပါၿပီ။

$ \displaystyle 2\alpha = \theta$ လို႔ ထားလိုက္မယ္။ ဒါဆိုရင္ $ \displaystyle \theta =\frac{\alpha}{2}$ ေပါ့...။

မူလညီမွ်ျခင္းမွာ အစားသြင္းလိုက္ ရင္ ...

$ \displaystyle \begin{array}{l}2{{\sin }^{2}}\displaystyle \frac{\theta }{2}=1-\cos \theta \\\\{{\sin }^{2}}\displaystyle \frac{\theta }{2}=\displaystyle \frac{{1-\cos \theta }}{2}\end{array}$

ဒါ့ေၾကာင့္ . . .

$ \displaystyle \sin \frac{\theta }{2}=\pm \sqrt{{\frac{{1-\cos \theta }}{2}}}$


$ \displaystyle \cos 2\alpha =2{{\cos }^{2}}\alpha -1$ လို႔လည္း သိထားခဲ့ၿပီးသား မဟုတ္လား . . .။

အထက္မွာ ေျပာခဲ့တဲ့အတိုင္း $ \displaystyle 2\alpha =\theta ,\alpha =\frac{\theta }{2}$ ကို အစားသြင္းလိုက္ရင္ ...

$ \displaystyle \begin{array}{l}2{{\cos }^{2}}\displaystyle \frac{\theta }{2}=1+\cos \theta \\\\{{\cos }^{2}}\displaystyle \frac{\theta }{2}=\displaystyle \frac{{1+\cos \theta }}{2}\end{array}$

ဒါ့ေၾကာင့္ . . .

$ \displaystyle \cos \frac{\theta }{2}=\pm \sqrt{{\frac{{1+\cos \theta }}{2}}}$


$ \displaystyle \sin \frac{\theta }{2}$ နဲ႕ $ \displaystyle \cos \frac{\theta }{2}$ ကို သိၿပီဆိုေတာ့ ....

$ \displaystyle \tan \displaystyle \frac{\theta }{2}= \displaystyle \frac{{\sin \displaystyle \frac{\theta }{2}}}{{\cos \displaystyle \frac{\theta }{2}}}$ ဆိုတဲ့ basic identity ကို သံုးၿပီး ဆက္ရွာလို႔ရၿပီေပါ့။

$ \displaystyle \begin{array}{*{20}{l}} {\tan \displaystyle \frac{\theta }{2}=\displaystyle \frac{{\sin \displaystyle \frac{\theta }{2}}}{{\cos \displaystyle \frac{\theta }{2}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\pm \displaystyle \frac{{\sqrt{{\displaystyle \frac{{1-\cos \theta }}{2}}}}}{{\sqrt{{\displaystyle \frac{{1+\cos \theta }}{2}}}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\pm \sqrt{{\displaystyle \frac{{\displaystyle \frac{{1-\cos \theta }}{2}}}{{\displaystyle \frac{{1+\cos \theta }}{2}}}}}} \end{array}$

ဒါ့ေၾကာင့္ . . .

$ \displaystyle \tan \displaystyle \frac{\theta }{2}=\pm \sqrt{{\displaystyle \frac{{1-\cos \theta }}{{1+\cos \theta }}}}$


ဆက္ၿပီး derive လုပ္ၾကည့္မယ္ ...။

$ \displaystyle \begin{array}{*{20}{l}} {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{1-\cos \theta }}{{1+\cos \theta }}\times \displaystyle \frac{{1+\cos \theta }}{{1+\cos \theta }}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{1-{{{\cos }}^{2}}\theta }}{{{{{(1+\cos \theta )}}^{2}}}}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{{{{\sin }}^{2}}\theta }}{{{{{(1+\cos \theta )}}^{2}}}}}}} \end{array}$

ဒါ့ေၾကာင့္ . . .

$ \displaystyle \tan \frac{\theta }{2}=\frac{{\sin \theta }}{{1+\cos \theta }}$


တဖန္ . . .

$ \displaystyle \begin{array}{*{20}{l}} {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{1-\cos \theta }}{{1+\cos \theta }}\times \displaystyle \frac{{1-\cos \theta }}{{1-\cos \theta }}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{{{{(1-\cos \theta )}}^{2}}}}{{1-{{{\cos }}^{2}}\theta }}}}} \\ {} \\ {\tan \displaystyle \frac{\theta }{2}=\sqrt{{\displaystyle \frac{{{{{(1-\cos \theta )}}^{2}}}}{{{{{\sin }}^{2}}\theta }}}}} \end{array}$

ဒါ့ေၾကာင့္ . . .

$ \displaystyle \tan \frac{\theta }{2}=\frac{{1-\cos \theta }}{{\sin \theta }}$


الأربعاء، 14 مارس 2012

Double Angle Formulae - Derivation

$ \displaystyle \sin (\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta $ ဆိုတာ သိခဲ့ၿပီး ျဖစ္မယ္ ထင္ပါတယ္။

ဒီ ပံုေသနည္းဟာ မည္သည့္ေထာင့္ $ \displaystyle \alpha$ နဲ႔ $ \displaystyle \beta$ အတြက္မဆို မွန္ပါတယ္။

ဒါဆိုရင္ $ \displaystyle \alpha=\beta$ အတြက္လည္း မွန္တာေပါ့။... ဒါေၾကာင့္

$ \displaystyle \sin (\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta $

$ \displaystyle \alpha=\beta,$ ျဖစ္တဲ့အခါ

$ \displaystyle \sin (\alpha +\alpha )=\sin \alpha \cos \alpha +\cos \alpha \sin \alpha $

ဒါ့ေၾကာင့္

$ \displaystyle \sin 2\alpha =2\sin \alpha \cos \alpha $


အလားတူပါပဲ.....။

$ \displaystyle \cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $

$ \displaystyle \alpha=\beta,$ ျဖစ္တဲ့အခါ

$ \displaystyle \cos (\alpha +\alpha )=\cos \alpha \cos \alpha -\sin \beta \sin \beta $

ဒါ့ေၾကာင့္...

$ \displaystyle \cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha $


$ \displaystyle {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ ဆိုတဲ့ Pythagorean Identity ကို မွတ္မိမယ္ ထင္ပါတယ္။

$ \displaystyle {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ ျဖစ္တာေၾကာင့္ $ \displaystyle {{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha $ နဲ႔ $ \displaystyle {{\cos }^{2}}\alpha =1-{{\sin }^{2}}\alpha $ ျဖစ္ပါတယ္။

$ \displaystyle \cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha $ ဆိုတဲ့ equation မွာ သက္ဆိုင္ရာ တန္ဖိုးေတြကို အစားသြင္းလိုက္ရင္ ...

$ \displaystyle \begin{array}{l}\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha \\\\\cos 2\alpha =1-{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha \end{array}$

ဒါ့ေၾကာင့္...

$ \displaystyle \cos 2\alpha =1-2{{\sin }^{2}}\alpha $


အလားတူပါပဲ...။

$ \displaystyle \begin{array}{l}\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha \\\\\cos 2\alpha ={{\cos }^{2}}\alpha -(1-{{\cos }^{2}}\alpha )\end{array}$

ဒါ့ေၾကာင့္...

$ \displaystyle \cos 2\alpha =2{{\cos }^{2}}\alpha -1$


$ \displaystyle \tan 2\alpha $ အတြက္ ဆက္ရွာၾကည့္ပါမယ္။

$ \displaystyle \tan (\alpha +\beta )=\frac{{\tan \alpha +\tan \beta }}{{1-\tan \alpha \tan \beta }}$ လို႔ သိခဲ့ၿပီးပါၿပီ။..

$ \displaystyle \alpha=\beta,$ ျဖစ္တဲ့အခါ

$ \displaystyle \tan (\alpha +\alpha )=\frac{{\tan \alpha +\tan \alpha }}{{1-\tan \alpha \tan \alpha }}$ ..

ဒါ့ေၾကာင့္...

$ \displaystyle \tan 2\alpha =\frac{{2\tan \alpha }}{{1-{{{\tan }}^{2}}\alpha }}$

الاثنين، 12 مارس 2012

Sum and Difference Formulae - Derivation


$ \displaystyle ΔABC, ΔACD$ နဲ႔ $ \displaystyle ΔCDF$ တို႔ဟာ ေထာင့္မွန္ႀတိဂံမ်ား ျဖစ္ၾကပါတယ္။

$ \displaystyle ΔABC$ မွာ $ \displaystyle ∠CAB$ ကို $ \displaystyle \alpha$ လို႔ သတ္မွတ္ပါမယ္။

$ \displaystyle ΔABC\simΔCDF$ ျဖစ္တာေၾကာင့္ $ \displaystyle ∠CDF=\alpha$ ျဖစ္ပါတယ္။

$ \displaystyle ΔACD$ မွာေတာ့ $ \displaystyle ∠CAD$ ကို $ \displaystyle \beta$ လို႔ သတ္မွတ္ပါမယ္။

ဒါဆိုရင္ $ \displaystyle ΔABC$ မွာ...

$ \displaystyle \sin \alpha=\frac{BC}{AC}$ နဲ႕ $ \displaystyle \cos \alpha=\frac{AB}{AC}$ ျဖစ္ပါတယ္။

ဒါ့ေၾကာင့္ $ \displaystyle BC =AC \sin \alpha$ နဲ႕ $ \displaystyle AB =AC \cos \alpha$ လို႔ ဆိုႏိုင္ပါတယ္။

တဖန္ $ \displaystyle ΔCDF$ မွာ...

$ \displaystyle \sin \alpha=\frac{FC}{DC}$ နဲ႕ $ \displaystyle \cos \alpha=\frac{DF}{DC}$ ျဖစ္ပါတယ္။

ဒီမွာလည္း $ \displaystyle FC =DC \sin \alpha$ နဲ႕ $ \displaystyle DF =DC \cos \alpha$ လို႔ ဆိုႏိုင္ပါတယ္။

$ \displaystyle ΔACD$ မွာလည္း ...

$ \displaystyle \sin \beta=\frac{DC}{AD}$ နဲ႕ $ \displaystyle \cos \beta=\frac{AC}{AD}$ ျဖစ္ပါတယ္။

ဒါဆိုရင္ $ \displaystyle DC =AD \sin \alpha$ နဲ႕ $ \displaystyle AC =AD \cos \alpha$ လို႔ ဆိုႏိုင္ပါတယ္။

$ \displaystyle ΔADE$ အတြက္ ဆက္ၾကည့္ရေအာင္...

$ \displaystyle \sin (\alpha+\beta)=\frac{DE}{AD}$ ျဖစ္ပါတယ္။

ပံုမွာ ေတြ႔ရတဲ့ အတိုင္း $ \displaystyle DE =DF+FE$ ျဖစ္ပါတယ္။။

ဒါ့ေၾကာင့္ $ \displaystyle \sin (\alpha +\beta )=\frac{{DF}}{{AD}}+\frac{{FE}}{{AD}}$ လို႔ ေျပာႏိုင္ပါတယ္။ ။

တဖန္ ့ $ \displaystyle BCFE$ က rectangle ျဖစ္တာေၾကာင့္ $ \displaystyle FE=BC$ လို႔ ေျပာႏိုင္ျပန္ပါတယ္။ ။

ဒါ့ေၾကာင့္ $ \displaystyle \sin (\alpha +\beta )=\frac{{DF}}{{AD}}+\frac{{BC}}{{AD}}$ လို႔ ေျပာႏိုင္ျပန္ပါတယ္။။

$ \displaystyle DF =DC \cos \alpha, BC =AC \sin \alpha$ လို႔ အထက္မွာ သိခဲ့ၿပီးပါၿပီ။ ဒါဆိုရင္ ။

$ \displaystyle \sin (\alpha +\beta )=\frac{{DC}}{{AD}}\cos \alpha +\frac{{AC}}{{AD}}\sin \alpha $ လို႔ ေျပာလို႔ရတာေပါ့။ ။

ဒီအခါမွာလည္း $ \displaystyle \sin \beta=\frac{DC}{AD}, \cos \beta=\frac{AC}{AD}$ လို႕သိခဲ့ၿပီးပါၿပီ။ ဒါေၾကာင့္။

$ \displaystyle \sin (\alpha +\beta )=\sin \beta \cos \alpha +\cos \beta \sin \alpha $ လို႔ ေျပာလို႔ရပါၿပီ။ ျပန္စီလိုက္ရင္ ...။

$ \displaystyle \sin (\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta $

အထက္ပါအတိုင္း ... $ \displaystyle \cos (\alpha +\beta )$ အတြက္ ပံုေသနည္းကို ဆက္ရွာႏိုင္ပါတယ္။ ..။

$ \displaystyle \begin{array}{l}\cos (\alpha +\beta )=\displaystyle \frac{{AE}}{{AD}}\\\\\cos (\alpha +\beta )=\displaystyle \frac{{AB-EB}}{{AD}}\\\\\cos (\alpha +\beta )=\displaystyle \frac{{AB-FC}}{{AD}}\ \ \ \ \left[ {\because EB=FC} \right]\\\\\cos (\alpha +\beta )=\displaystyle \frac{{AB}}{{AD}}-\displaystyle \frac{{FC}}{{AD}}\\\\\cos (\alpha +\beta )=\displaystyle \frac{{AC}}{{AD}}\cos \alpha -\displaystyle \frac{{DC}}{{AD}}\sin \alpha \\\\\text{Since}\ \displaystyle \frac{{AC}}{{AD}}=\cos \beta \ \operatorname{and}\ \displaystyle \frac{{DC}}{{AD}}=\sin \beta ,\\\\\text{Therefore,}\end{array}$

$ \displaystyle \cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $

$ \displaystyle \sin (\alpha +\beta )$ နဲ႔ $ \displaystyle \cos (\alpha +\beta )$ ကို သိၿပီဆိုေတာ့ $ \displaystyle \tan (\alpha +\beta )$ ကို ရွာႏိုင္ၿပီေပါ့။

$ \displaystyle \begin{array}{l}\tan (\alpha +\beta )=\displaystyle \frac{{\sin (\alpha +\beta )}}{{\cos (\alpha +\beta )}}\\\\\tan (\alpha +\beta )=\displaystyle \frac{{\sin \alpha \cos \beta +\cos \alpha \sin \beta }}{{\cos \alpha \cos \beta -\sin \alpha \sin \beta }}\\\\\text{Dividing the numerator and denominator }\\\text{with}\ \cos \alpha \cos \beta ,\\\\\tan (\alpha +\beta )=\displaystyle \frac{{\displaystyle \frac{{\sin \alpha \cos \beta }}{{\cos \alpha \cos \beta }}+\displaystyle \frac{{\cos \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}{{\displaystyle \frac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }}-\displaystyle \frac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}\\\\\text{Therefore,}\end{array}$

$ \displaystyle \tan (\alpha +\beta )=\frac{{\tan \alpha +\tan \beta }}{{1-\tan \alpha \tan \beta }}$

$ \displaystyle \begin{array}{l}\ \ \ \ \sin (-\alpha )=-\sin \alpha ,\\\\\ \ \ \ \cos (-\alpha )=\cos \alpha ,\\\\\ \ \ \ \tan (-\alpha )=-\tan \alpha \\\\\ \ \ \ \sin \left( {\alpha -\beta } \right)=\sin \left[ {\alpha +(-\beta )} \right]\\\\\ \ \ \ \sin \left( {\alpha -\beta } \right)=\sin \alpha \cos (-\beta )+\cos \alpha \sin (-\beta )\\\\\text{Therefore,}\end{array}$

$ \displaystyle \sin \left( {\alpha -\beta } \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $

$ \displaystyle \begin{array}{l}\ \ \ \ \cos \left( {\alpha -\beta } \right)=\cos \left[ {\alpha +(-\beta )} \right]\\\\\ \ \ \ \cos \left( {\alpha -\beta } \right)=\cos \alpha \cos (-\beta )-\sin \alpha \sin (-\beta )\\\\\text{Therefore,}\end{array}$

$ \displaystyle \cos \left( {\alpha -\beta } \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $

$ \displaystyle \begin{array}{l}\ \ \ \ \tan \left( {\alpha -\beta } \right)=\tan \left[ {\alpha +(-\beta )} \right]\\\\\ \ \ \ \tan \left( {\alpha -\beta } \right)=\displaystyle \frac{{\tan \alpha +\tan (-\beta )}}{{1-\tan \alpha \tan (-\beta )}}\end{array}$

$ \displaystyle \tan \left( {\alpha -\beta } \right)=\frac{{\tan \alpha -\tan \beta }}{{1+\tan \alpha \tan \beta }}$

အားလံုးျပန္ေပါင္းရရင္....

$ \displaystyle \begin{array}{l} \sin \left( {\alpha \pm \beta } \right)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\\\ \cos \left( {\alpha \pm \beta } \right)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\\\ \tan \left( {\alpha \pm \beta } \right)=\displaystyle \frac{{\tan \alpha \pm \tan (-\beta )}}{{1\mp \tan \alpha \tan (-\beta )}}\end{array}$