1.   Given that (p -  x)6 = r - 96x + sx2 + ... , find p, r, s.     Solution
      (p -  x)6 = r - 96x + sx2 + ...
      Using binomial expansion,
      6C0 p6 + 6C1 p5 (-  x) + 6C2 p4 (- x)2 + ... = r - 96x + sx2 + ...
             p6 + 6 p5 (-  x) + 15 p4 (- x)2 + ... = r - 96x + sx2 + ...
      p6 - 3 p5 x +  p4 x2 + ... = r - 96x + sx2 + ...
      ∴ 3p5 = 96
          p = 2
      r = p6 = 64
      s =  p4 = (2)4 =(16) = 60.
2.  The first three terms in the expansion of (a + b)n in        ascending powers of b are denoted by p, q and r       respectively. Show that   . Given that        p = 4, q = 32 and r = 96, evaluate n.      Solution
      (a + b)n  = p + q + r + ...
        nC0 an + nC1 an-1 b + nC2 an-2 b2 + ... = p + q + r + ...
      an + n an-1 +  an-2 b2 + ... = p + q + r + ...
     ∴ p  = an 
        q  = n an-1
           r  =  
     ∴ 
         When p = 4, q = 32 and r = 96,