‏إظهار الرسائل ذات التسميات properties of logarithms. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات properties of logarithms. إظهار كافة الرسائل

الأربعاء، 29 يوليو 2020

Logarithms : Exercise (3.5) - Solutions

1.          Given that $\log 2.345=0.3701 .$ What are the characteristics and the mantissas of each of the followings?

(a) $\log 234,500$

(b) $\log 0.0002345$

Show/Hide Solution

$\begin{array}{l}\ \ \ \ \ \ \ \ \log 2.345=0.3701\\\\\text{(a)}\ \ \ \log 234,500\\\\\ \ \ =\log \left( {2.345\times {{{10}}^{5}}} \right)\\\\\ \ \ =\log {{10}^{5}}+\log 2.345\\\\\ \ \ =5+0.3701\\\\\ \ \ =5.3701\\\\\therefore \ \text{characteristic}=5\\\\\ \ \ \text{mantissa}=.3701\\\\\\\text{(b)}\ \ \ \log 0.0002345\\\\\ \ \ =\log \left( {2.345\times {{{10}}^{{-4}}}} \right)\\\\\ \ \ =\log {{10}^{{-4}}}+\log 2.345\\\\\ \ \ =-4+0.3701\\\\\therefore \ \text{characteristic}=-4\\\\\ \ \ \text{mantissa}=.3701\end{array}$

2.          Using $\log _{10} 2.74=0.4377, \log _{10} 2.83=0.4518, \log _{10} 5.97=0.7760$, $\log _{10} 6.21=0.7931, \log _{10} 8.18=0.9128$ and $\log _{10} 9.27=0.9671$, compute

(a) $\left(\displaystyle\frac{28.3}{597 \times 621}\right)^{2}$

(b) $\displaystyle\frac{274^{\frac{1}{3}}}{927 \times 818}$

(c) $\displaystyle\frac{28.3 \sqrt{0.621}}{597}$

Show/Hide Solution

$\begin{array}{l}\ \ \ \ \ {{\log }_{{10}}}2.74=0.4377,\\\ \ \ \ \ {{\log }_{{10}}}2.83=0.4518,\\\ \ \ \ \ {{\log }_{{10}}}5.97=0.7760,\\\ \ \ \ \ {{\log }_{{10}}}6.21=0.7931,\\\ \ \ \ \ {{\log }_{{10}}}8.18=0.9128,\\\ \ \ \ \ {{\log }_{{10}}}9.27=0.9671.\\\text{(a)}\ \ \text{Let}\ x={{\left( {\displaystyle\frac{{28.3}}{{597\times 621}}} \right)}^{2}},\ \text{then}\\\ \ \ \ \ \log x=\log {{\left( {\displaystyle\frac{{28.3}}{{597\times 621}}} \right)}^{2}}\\\ \ \ \ \ \ \ \ \ \ \ \ =2\log \left( {\displaystyle\frac{{28.3}}{{597\times 621}}} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =2\left( {\log 28.3-\log (597\times 621)} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =2\left( {\log 28.3-\log 597-\log 621} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =2\left( {\log 28.3-\log 597-\log 621} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =2\left( {1.4518-2.7760-2.7931} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =-8.2346\\\ \ \ \ \ x={{10}^{{-8.2346}}}\\\\\text{(b)}\ \ \text{Let}\ x=\displaystyle\frac{{{{{274}}^{{\displaystyle\frac{1}{3}}}}}}{{927\times 818}},\ \text{then}\\\ \ \ \ \ \log x=\log \left( {\displaystyle\frac{{{{{274}}^{{\displaystyle\frac{1}{3}}}}}}{{927\times 818}}} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{1}{3}\log 274-\log \left( {927\times 818} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{1}{3}\log 274-\left( {\log 927+\log 818} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{1}{3}\left( {2.4377} \right)-2.9671-2.9128\\\ \ \ \ \ \ \ \ \ \ \ \ =-5.0673\\\ \ \ \ \ x={{10}^{{-5.0673}}}\\\\\text{(c)}\ \ \text{Let}\ x=\displaystyle\frac{{28.3\sqrt{{0.621}}}}{{597}},\ \text{then}\\\ \ \ \ \ \log x=\log \left( {\displaystyle\frac{{28.3\sqrt{{0.621}}}}{{597}}} \right)\\\ \ \ \ \ \ \ \ \ \ \ \ =\log 28.3+\displaystyle\frac{1}{2}\log 0.621-\log 597\\\ \ \ \ \ \ \ \ \ \ \ \ =1.4518+\displaystyle\frac{1}{2}\left( {-1+0.7931} \right)-2.7760\\\ \ \ \ \ \ \ \ \ \ \ \ =-1.4277\\\ \ \ \ \ x={{10}^{{-1.4277}}}\end{array}$

3.          Express each to a natural logarithm in terms of $\ln 2$ and $\ln 5$.

(a) $\log_{8}25$

(b) $\log_{5}64$

(c) $\log_{25}100$

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ \ {{\log }_{8}}25\ \\\ \ \ \ =\displaystyle\frac{{\ln 25}}{{\ln 8}}\\\ \ \ \ =\displaystyle\frac{{\ln {{5}^{2}}}}{{\ln {{2}^{3}}}}\\\ \ \ \ =\displaystyle\frac{{2\ln 5}}{{3\ln 2}}\\\\\text{(b)}\ \ \ \ {{\log }_{5}}64\ \\\ \ \ \ =\displaystyle\frac{{\ln 64}}{{\ln 5}}\\\ \ \ \ =\displaystyle\frac{{\ln {{2}^{6}}}}{{\ln 5}}\\\ \ \ \ =\displaystyle\frac{{6\ln 5}}{{\ln 2}}\\\\\text{(c)}\ \ \ \ {{\log }_{{25}}}100\ \\\ \ \ \ =\displaystyle\frac{{\ln 100}}{{\ln 25}}\\\ \ \ \ =\displaystyle\frac{{\ln ({{5}^{2}}\times {{2}^{2}})}}{{\ln {{5}^{2}}}}\\\ \ \ \ =\displaystyle\frac{{2\ln 5+2\ln 2}}{{2\ln 5}}\\\ \ =1+\displaystyle\frac{{\ln 2}}{{\ln 5}}\ \ \ \end{array}$

4.          Write each expression as a single logarithm.

(a) $3\ln \left( {t + 5} \right) - 4\ln t - 2\ln \left( {s - 1} \right)$

(b) $2\ln x + 5\ln y - \displaystyle\frac{1}{2}\ln z$

(c) $\displaystyle \frac{1}{3}\ln a - 6\ln b + 2$

Show/Hide Solution

$\begin{array}{l} \text{(a)}\ \ \ \ 3\ln \left( {t+5} \right)-4\ln t-2\ln \left( {s-1} \right)\\\\ \ \ \ \ =\ln {{\left( {t+5} \right)}^{3}}-\ln {{t}^{4}}-\ln {{\left( {s-1} \right)}^{2}}\\\\ \ \ \ \ =\ln \displaystyle\frac{{{{{\left( {t+5} \right)}}^{3}}}}{{{{t}^{4}}{{{\left( {s-1} \right)}}^{2}}}}\\\\\\ \text{(b)}\ \ \ \ 2\ln x+5\ln y-\displaystyle\frac{1}{2}\ln z\\\\ \ \ \ \ =\ln {{x}^{2}}+\ln {{y}^{5}}-\ln \sqrt{z}\\\\ \ \ \ \ =\ln \displaystyle\frac{{{{x}^{2}}\cdot {{y}^{5}}}}{{\sqrt{z}}}\\\\\\ \text{(c)}\ \ \ \ \displaystyle\frac{1}{3}\ln a-6\ln b+2\\\\ \ \ \ \ =\ln {{a}^{{\frac{1}{3}}}}-\ln {{b}^{6}}+\ln {{e}^{2}}\\\\ \ \ \ \ =\ln \displaystyle\frac{{\sqrt[3]{a}\cdot {{e}^{2}}}}{{{{b}^{6}}}} \end{array}$

5.          Solve the following logarithmic equations for $x$.

(a) $\ln \left( x \right) + \ln \left( {x + 3} \right) = \ln \left( {20 - 5x} \right)$

(b) $2\ln \left( {\sqrt x } \right) - \ln \left( {1 - x} \right) = 2$

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ln (x)+\ln \left( {x+3} \right)=\ln \left( {20-5x} \right)\\\ \\\ \ \ \ \ \ \ln \left( {x\left( {x+3} \right)} \right)=\ln \left( {20-5x} \right)\\\\\ \ \ \ \ \ x\left( {x+3} \right)=20-5x\\\\\ \ \ \ \ \ {{x}^{2}}+8x-20=0\\\\\ \ \ \ \ \ (x+10)(x-2)=0\\\\\ \ \ \ \ \ x=-10\ \text{or}\ x=2\\\\\ \ \ \ \ \ \text{Since }x>0,\ x=-10\ \text{is impossible}\text{.}\\\\\ \ \ \therefore \ \ x=2\\\\\ \ \ \ \ \\\text{(b)}\ \ \ 2\ln \left( {\sqrt{x}} \right)-\ln \left( {1-x} \right)=2\\\ \\\ \ \ \ \ \ln \left( {\displaystyle\frac{{{{{\left( {\sqrt{x}} \right)}}^{2}}}}{{1-x}}} \right)=2\\\\\ \ \ \ \ \displaystyle\frac{x}{{1-x}}={{e}^{2}}\\\ \\\ \ \ \ \ x={{e}^{2}}-{{e}^{2}}x\\\\\ \ \ \ \ {{e}^{2}}x+x={{e}^{2}}\\\\\ \ \ \ \ x\left( {{{e}^{2}}+1} \right)={{e}^{2}}\\\\\ \ \ \ \ x=\displaystyle\frac{{{{e}^{2}}}}{{{{e}^{2}}+1}}\end{array}$

6.          Solve the equations:

(a) $x - xe^{5x + 2} = 0$

(b) $7 + 15e^{1 - 3x} = 10$ using $\ln 5 = 1.6094$.

(c) $4e^{1 + 3x} - 9e^{5 - 2x} = 0$ using $\ln 2=0.6931$ and $\ln 3=1.0986$.

No(3) မှ No(6) အထိ မေးခွန်းများသည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ Natural Logarithm ဆိုင်ရာ ပုစ္တာများကို တိုးချဲ့လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ x-x{{e}^{{5x+2}}}=0\\\ \\\ \ \ \ \ \ x\left( {1-{{e}^{{5x+2}}}} \right)=0\\\\\ \ \ \ \ \ x=0\ \text{or}\ 1-{{e}^{{5x+2}}}=0\\\\\ \ \ \ \ \ x=0\ \text{or}\ {{e}^{{5x+2}}}=1\\\\\ \ \ \ \ \ x=0\ \text{or}\ 5x+2=\ln 1\\\\\ \ \ \ \ \ x=0\ \text{or}\ 5x+2=0\\\\\ \ \therefore \ \ \ x=0\ \text{or}\ x=-\displaystyle\frac{2}{5}\\\\\ \ \ \ \ \\\text{(b)}\ \ \ 7+15{{e}^{{1-3x}}}=10\\\ \\\ \ \ \ \ \ 15{{e}^{{1-3x}}}=3\\\\\ \ \ \ \ \ {{e}^{{1-3x}}}=\displaystyle\frac{1}{5}\\\ \\\ \ \ \ \ \ 1-3x=\ln \left( {\displaystyle\frac{1}{5}} \right)\\\\\ \ \ \ \ \ 1-3x=\ln \left( {{{5}^{{-1}}}} \right)\\\\\ \ \ \ \ \ 1-3x=-\ln \left( 5 \right)\\\\\ \ \ \ \ \ 3x=1+\ln \left( 5 \right)\\\\\ \ \ \ \ \ 3x=1+\text{1}\text{.6094}\\\\\ \ \ \ \ \ 3x=2.\text{6094}\\\\\ \ \ \ \ \ x=\text{0}\text{.8698}\\\\\\\text{(c)}\ \ \ 4{{e}^{{1+3x}}}-9{{e}^{{5-2x}}}=0\\\\\ \ \ \ \ 4{{e}^{{1+3x}}}=9{{e}^{{5-2x}}}\\\\\ \ \ \ \ \displaystyle\frac{{{{e}^{{1+3x}}}}}{{{{e}^{{5-2x}}}}}=\displaystyle\frac{9}{4}\\\\\ \ \ \ \ {{e}^{{5x-4}}}=\displaystyle\frac{9}{4}\\\\\ \ \ \ \ 5x-4=\ln \displaystyle\frac{{{{3}^{2}}}}{{{{2}^{2}}}}\\\\\ \ \ \ \ 5x=2\left( {\ln 3-\ln 2} \right)+4\\\\\ \ \ \ \ x=\displaystyle\frac{2}{5}\left( {\ln 3-\ln 2+2} \right)\\\\\ \ \ \ \ x=\displaystyle\frac{2}{5}\left( {\text{1}\text{.0986}-\text{0}\text{.6931+2}} \right)\\\\\ \ \ \ \ x=\text{0}\text{.9622}\end{array}$

الثلاثاء، 28 يوليو 2020

Logarithms : Exercise (3.4) - Solutions

1.          If $\log _{a} b+\log _{b} a^{2}=3,$ find $b$ in terms of $a$.

Show/Hide Solution

$\begin{array}{l}{{\log }_{a}}\,b+{{\log }_{b}}\,{{a}^{2}}=3\\\\{{\log }_{a}}\,b+2{{\log }_{b}}a=3\\\\{{\log }_{a}}\,b+\displaystyle\frac{2}{{{{{\log }}_{a}}\,b}}=3\\\\\text{Let}\ {{\log }_{a}}\,b=u,\ \text{then}\\\\u+\displaystyle\frac{2}{u}=3\\\\\therefore \ \ {{u}^{2}}+2=3u\\\\\therefore \ \ {{u}^{2}}-3u+2=0\\\\\therefore \ \ (u-1)(u-2)=0\\\\\therefore \ \ {{\log }_{a}}\,b=1\ \text{or}\ {{\log }_{a}}\,b=2\\\\\therefore \ \ \,b=a\ \text{or}\ \,b={{a}^{2}}\end{array}$

2.          Show that

(a) $\log _{4} x=2 \log _{16} x$.

(b) $\log _{b} x=3 \log _{b^{3}} x \quad$.

(c) $\log _{2} x=\left(1+\log _{2} 3\right) \log _{6} x$.

Show/Hide Solution

$\begin{array}{l}(\text{a})\ \ \ \text{LHS}={{\log }_{4}}x\\\\\ \ \ \ \ \ \text{RHS}=2{{\log }_{{16}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =2{{\log }_{{{{4}^{2}}}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{2}{2}{{\log }_{4}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{4}}x\\\\\ \ \therefore \ \ {{\log }_{4}}x=2{{\log }_{{16}}}x\\\\\\(\text{b})\ \ \text{LHS}={{\log }_{b}}x\\\\\ \ \ \ \ \text{RHS}=3{{\log }_{{{{b}^{3}}}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{3}{3}{{\log }_{b}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{b}}x\\\\\ \ \therefore \ \ {{\log }_{b}}x=3{{\log }_{{{{b}^{3}}}}}x\\\\\\(\text{c})\ \ \text{LHS}={{\log }_{2}}x\\\\\ \ \ \ \ \text{RHS}=\left( {1+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left( {{{{\log }}_{2}}2+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{2}}6\cdot {{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{1}{{{{{\log }}_{6}}2}}\cdot {{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{{{{{\log }}_{6}}x}}{{{{{\log }}_{6}}2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{2}}x\\\\\ \ \therefore \ \ {{\log }_{2}}x=\left( {1+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\end{array}$

3.          If $a=\log _{b} c, b=\log _{c} a$ and $c=\log _{a} b,$ prove that $a b c=1$.

Show/Hide Solution

$ \begin{array}{l}\ \ \ a={{\log }_{b}}c,\ b={{\log }_{c}}a,\ c={{\log }_{a}}b\\\\\therefore \ \ abc={{\log }_{b}}c\cdot \ {{\log }_{c}}a\cdot {{\log }_{a}}b\\\\\therefore \ \ abc=\displaystyle\frac{{\log c}}{{\log b}}\cdot \ \displaystyle\frac{{\log a}}{{\log c}}\cdot \displaystyle\frac{{\log b}}{{\log a}}\ \left[ {\because \ \text{by L8}} \right]\\\\\therefore \ \ abc=1\end{array}$

4.          Show that

(a) $\left(\log _{10} 4-\log _{10} 2\right) \log _{2} 10=1$.

(b) $2 \log _{2} 3\left(\log _{9} 2+\log _{9} 4\right)=3$.

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ \left( {{{{\log }}_{{10}}}4-{{{\log }}_{{10}}}2} \right)\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}\displaystyle\frac{4}{2}\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}2\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}2\cdot \displaystyle\frac{1}{{{{{\log }}_{{10}}}2}}\\\\\ \ \ =\ 1\\\\\\\text{(b)}\ \ \ 2\cdot {{\log }_{2}}3\cdot \left( {{{{\log }}_{9}}2+{{{\log }}_{9}}4} \right)\\\\\ \ \ ={{\log }_{2}}{{3}^{2}}\cdot {{\log }_{9}}(2\times 4)\\\\\ \ \ ={{\log }_{2}}9\cdot {{\log }_{9}}8\\\\\ \ \ ={{\log }_{2}}9\cdot {{\log }_{9}}{{2}^{3}}\\\\\ \ \ ={{\log }_{2}}9\cdot 3{{\log }_{9}}2\\\\\ \ \ =3\cdot \displaystyle\frac{1}{{{{{\log }}_{9}}2}}\cdot {{\log }_{9}}2\\\\\ \ \ =3\end{array}$

5.          Compute

(a) $3^{\log _{2} 5}-5^{\log _{2} 3}$

(b) $4^{\log _{2} 3}$

(c) $2^{\log _{2 \sqrt{2}} 27}$

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ {{3}^{{{{{\log }}_{2}}\,5}}}-{{5}^{{{{{\log }}_{2}}\,3}}}\\\\\ \ \ \ ={{3}^{{{{{\log }}_{2}}\,5}}}-{{3}^{{{{{\log }}_{2}}\,5}}}\\\\\ \ \ \ =0\\\\\text{(b)}\ \ \ {{4}^{{{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{2}}} \right)}^{{{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{{{{{\log }}_{2}}3}}}} \right)}^{2}}\\\\\ \ \ \ ={{3}^{2}}\\\\\ \ \ \ =9\\\\\\\text{(c)}\ \ \ {{2}^{{{{{\log }}_{{2\sqrt{2}}}}27}}}\\\\\ \ \ \ ={{2}^{{{{{\log }}_{{{{2}^{{3/2}}}}}}{{3}^{3}}}}}\\\\\ \ \ \ ={{2}^{{\frac{2}{3}\times 3{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{2}^{{2{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{{{{{\log }}_{2}}3}}}} \right)}^{2}}\\\\\ \ \ \ ={{3}^{2}}\\\\\ \ \ \ =9\end{array}$

6.          Using properties of logarithm, solve the following equations.

(a) $ {{\log }_{x}}10+{{\log }_{{{{x}^{2}}}}}10=2$

(b) $25^{\log _{10} x}=5+4 x^{\log _{10} 5}$

(c) $9^{\log _{3}\left(\log _{2} x\right)}=\log _{2} x-\left(\log _{2} x\right)^{2}+1$

(d) $\log _{2} x+\log _{4} x+\log _{16} x=7$

(e) $\log _{7} 2+\log _{49} x=\log _{\frac{1}{7}} \sqrt{3}$

(f) $\log _{3} x-\log _{\frac{1}{3}} x^{2}=6$

(g) $ {{\log }_{x}}(9{{x}^{2}})\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4$

No (6) သည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ။ Change of Base နှင့် သက်ဆိုင်သော ဉာဏ်စမ်းမေးခွန်း များကို ထပ်ဆင့်လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။

Show/Hide Solution

$ \begin{array}{l} \text{(a)}\ \ {{\log }_{x}}10+{{\log }_{{{{x}^{2}}}}}10=2\\\\ \ \ \ \ \ {{\log }_{x}}10+\displaystyle\frac{1}{2}{{\log }_{x}}10=2\\\\ \ \ \ \ \ \displaystyle\frac{3}{2}{{\log }_{x}}10=2\\\\ \ \ \ \ \ {{\log }_{x}}10=\displaystyle\frac{4}{3}\\\\ \ \ \ \ \ {{x}^{{\frac{4}{3}}}}=10\\\\ \ \ \ \ \ x={{10}^{{\frac{3}{4}}}}\\\\\\ \text{(b)}\ \ {{25}^{{{{{\log }}_{{10}}}x}}}=5+4{{x}^{{{{{\log }}_{{10}}}5}}}\\\\ \ \ \ \ \ {{\left( {{{5}^{2}}} \right)}^{{{{{\log }}_{{10}}}x}}}=5+4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}\\\\ \ \ \ \ \ {{5}^{{2\cdot }}}^{{{{{\log }}_{{10}}}x}}=5+4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}\\\\ \ \ \ \ \ {{\left( {{{5}^{{{{{\log }}_{{10}}}x}}}} \right)}^{2}}-4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}-5=0\\\\ \ \ \ \ \ \text{Let}\ {{5}^{{{{{\log }}_{{10}}}x}}}=u,\ \text{then}\\\\ \ \ \ \ \ {{u}^{2}}-4u-5=0\\\\ \ \ \ \ \ (u-5)(u+1)=0\\\\ \ \therefore \ \ \ u=5\ \text{or}\ u=-1\\\\ \ \therefore \ \ \ {{5}^{{{{{\log }}_{{10}}}x}}}=5\ \text{or}\ {{5}^{{{{{\log }}_{{10}}}x}}}=-1\\\\ \ \ \ \ \ \text{Since}\ {{5}^{{{{{\log }}_{{10}}}x}}}>0,\ {{5}^{{{{{\log }}_{{10}}}x}}}=-1\ \text{is}\ \text{impossible}\text{.}\\\\ \ \therefore \ \ \ {{5}^{{{{{\log }}_{{10}}}x}}}=5\\\\ \ \therefore \ \ \ {{\log }_{{10}}}x=1\\\\ \ \therefore \ \ \ x=10\\\\\\ \text{(c)}\ \ {{9}^{{{{{\log }}_{3}}\left( {{{{\log }}_{2}}x} \right)}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{{{{{\log }}_{3}}9}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{{{{{\log }}_{3}}{{3}^{2}}}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{2}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\ \ \ \ \ \ 2{{\left( {{{{\log }}_{2}}x} \right)}^{2}}-{{\log }_{2}}x-1=0\\\\ \ \ \ \ \ \left( {2\cdot {{{\log }}_{2}}x+1} \right)\left( {{{{\log }}_{2}}x-1} \right)=0\\\\ \ \ \ \ \ {{\log }_{2}}x=-\displaystyle\frac{1}{2}\ \text{or}\ {{\log }_{2}}x=1\\\\ \ \therefore \ \ \ x={{2}^{{-\frac{1}{2}}}}\ \text{or}\ x=2\\\\ \ \therefore \ \ \ x=\displaystyle\frac{1}{{\sqrt{2}}}\ \text{or}\ x=2\\\\\\ \text{(d)}\ \ {{\log }_{2}}x+{{\log }_{4}}x+{{\log }_{{16}}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x+{{\log }_{{{{2}^{2}}}}}x+{{\log }_{{{{2}^{4}}}}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x+\displaystyle\frac{1}{2}{{\log }_{2}}x+\displaystyle\frac{1}{4}{{\log }_{2}}x=7\\\\ \ \ \ \ \ \displaystyle\frac{7}{4}{{\log }_{2}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x=4\\\ \therefore \ \ \ x={{2}^{4}}=16\\\\\\ \text{(e)}\ \ {{\log }_{7}}2+{{\log }_{{49}}}x={{\log }_{{\displaystyle\frac{1}{7}}}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+{{\log }_{{{{7}^{2}}}}}x={{\log }_{{{{7}^{{-1}}}}}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+\displaystyle\frac{1}{2}{{\log }_{7}}x=-{{\log }_{7}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+{{\log }_{7}}{{x}^{{\frac{1}{2}}}}={{\log }_{7}}{{3}^{{-\frac{1}{2}}}}\\\\ \ \ \ \ \ {{\log }_{7}}2{{x}^{{\frac{1}{2}}}}={{\log }_{7}}\displaystyle\frac{1}{{{{3}^{{\frac{1}{2}}}}}}\\\\ \ \ \therefore \ \ 2{{x}^{{\frac{1}{2}}}}=\displaystyle\frac{1}{{{{3}^{{\frac{1}{2}}}}}}\\\\ \ \ \therefore \ \ 4x=\displaystyle\frac{1}{3}\\\ \ \therefore \ \ x=\displaystyle\frac{1}{{12}}\\\\\\ \text{(f)}\ \ {{\log }_{3}}x-{{\log }_{{\displaystyle\frac{1}{3}}}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}x-{{\log }_{{{{3}^{{-1}}}}}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}x+{{\log }_{3}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}{{x}^{3}}=6\\\\ \ \ \ \ \ {{x}^{3}}={{3}^{6}}\\\\ \ \therefore \ \ \ x={{3}^{2}}=9\\\\\\ \text{(g)}\ \ {{\log }_{x}}(9{{x}^{2}})\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4\\\\ \ \ \ \ \ \displaystyle\frac{{{{{\log }}_{3}}(9{{x}^{2}})}}{{{{{\log }}_{3}}x}}\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4\\\\ \ \ \ \ \ {{\log }_{3}}(9{{x}^{2}})\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ ({{\log }_{3}}9+{{\log }_{3}}{{x}^{2}})\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ ({{\log }_{3}}{{3}^{2}}+2{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ (2+2{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \therefore \ \ (1+{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=2\\\\ \ \therefore \ \ {{\left( {{{{\log }}_{3}}x} \right)}^{2}}+\left( {{{{\log }}_{3}}x} \right)-2=0\\\\ \ \therefore \ \ ({{\log }_{3}}x+2)({{\log }_{3}}x-1)=0\\\\ \ \therefore \ \ \ {{\log }_{3}}x=-2\ \text{or}\ {{\log }_{3}}x=1\\\\ \ \therefore \ \ \ x={{3}^{{-2}}}\ \text{or}\ x=3\\\\ \ \therefore \ \ \ x=\displaystyle\frac{1}{9}\ \text{or}\ x=3 \end{array}$

الأحد، 22 مايو 2016

Logarithms

 John Napier (inventor of logarithms)

Logarithm ကို အေျခခံက်က်ေလး ရွင္းျပေပးထားလို႔ နားလည္လြယ္မွာပါ။ ေလ့က်င့္ဖို႔ exercises ေတြလည္းပါေတာ့ အသံုး၀င္မယ္လို႔ ေမွ်ာ္လင့္ပါတယ္။