Similarity of Triangles
Two triangles whose corresponding angles are equal and whose corresponding sides are proportional are said to be similar. 
         လိုက်ဖက်ထောင့်များ တူညီပြီး လိုက်ဖက်အနားများ အချိုးညီသော တြိဂံနှစ်ခုကို သဏ္ဌာန်တူ တြိဂံများဟုခေါ်သည်။         
Exercise (8.3)
- Use the given information to tell whether each pair of triangles is similar. Give a reason for each answer.
 (a)
 (b)
 (c)
 (d)
 (e)
 (f)
 (g)
 (h)
 
- In each of the following triangles, the lengths of certain segments are marked. Find the value of $x$, $y$, $z$, $w$ and $v$.
 (a)
 (b)
 (c)
 
- Find the marked lengths in each of the figures.
 (a)
 (b)
 (c)
 (d)
 (e)
- In the figure, $X Y \parallel P R$ and $V T \parallel Q R$.  If $\displaystyle \frac{P T}{T R}=\displaystyle \frac{3}{2},  \displaystyle \frac{Q Y}{Y R}=\displaystyle \frac{2}{1}$ and $P Q=15 \mathrm{~cm}$, calculate
 (a) the lengths of $P V, P X$ and $X V$.
 (b) the numerical values of $\displaystyle \frac{Y W}{W X}$ and $\displaystyle \frac{V W}{Q Y}$.
 
-  Given:  Parallelogram  $B I R D$, 
 $I G$ bisects $\angle B I R$
 Prove: $\displaystyle\frac{B E}{E I}=\frac{R G}{G I}$
 
 
- Given : 	$R Q \perp P Q$ 
 $P Q \perp P T$
 $S T \perp P R$
 Prove: $S T \cdot R Q=P S \cdot P Q$
 
 
- Given :  Parallelogram  $A B C D$ ; $P Q \parallel M B$ 
 Prove : $\triangle A B M \sim \triangle C Q P$ .
 
 
- $\triangle A B C$ and $\triangle C A D$ are drawn on opposite sides of AC such that $A B: B C: C A=C A: A D: D C$ Prove that $D C  \parallel A B$.
 
 
 

 
 
 
 
 
 
 
 
 
 
0 Reviews:
إرسال تعليق