MATRICULATION EXAMINATION WRITE YOUR ANSWERS IN THE ANSWER BOOKLET. 
 SECTION (A) (Answer ALL questions.) 1.(a)      Functions $ \displaystyle f$ and $ \displaystyle g$ are defined by $ \displaystyle f(x)=x+1$, and $ \displaystyle g(x)=2x^2-x+3$. Find the values of  $ \displaystyle x$ which satisfy the equation  $ \displaystyle (f\circ g)(x)=4x+1$. 
(3 marks)
  Show/Hide Solution
           $ \displaystyle \begin{array}{l}\ \ \ \ \ f(x)=x+1,\ \ \\\\\ \ \ \ \ g(x)=2{{x}^{2}}-x+3\\\\\ \ \ \ \ \left( {f\circ g} \right)(x)=4x+1\\\\\therefore \ \ \ f\left( {2{{x}^{2}}-x+3} \right)=4x+1\\\\\therefore \ \ \ 2{{x}^{2}}-x+3+1=4x+1\\\\\therefore \ \ \ 2{{x}^{2}}-5x+3=0\\\\\therefore \ \ \ (x-1)(2x-3)=0\\\\\therefore \ \ \ x=1\ (\text{or})\ x=\displaystyle \frac{3}{2}\end{array}$    
 1.(b)       The expression $ \displaystyle 2x^2+5x-3$ leaves a remainder of $ \displaystyle 2p^2-3p$ when divided by $ \displaystyle 2x-p$. Find the values of $ \displaystyle p$. 
(3 marks)
   Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ \text{Let}\ f(x)=2{{x}^{2}}+5x-3.\ \\\\\ \ \ \ \ \text{By the problem,}\\\\\ \ \ \ \ f\left( {\displaystyle \frac{p}{2}} \right)=2{{p}^{2}}-3p\\\\\therefore \ \ \ 2{{\left( {\displaystyle \frac{p}{2}} \right)}^{2}}+5\left( {\displaystyle \frac{p}{2}} \right)-3=2{{p}^{2}}-3p\\\\\therefore \ \ \ \displaystyle \frac{{{{p}^{2}}}}{2}+\displaystyle \frac{{5p}}{2}-3=2{{p}^{2}}-3p\\\\\therefore \ \ \ {{p}^{2}}+5p-6=4{{p}^{2}}-6p\\\\\therefore \ \ \ 3{{p}^{2}}-11p+6=0\\\\\therefore \ \ \ (3p-2)(p-3)=0\\\\\therefore \ \ \ p=\displaystyle \frac{2}{3}\ (\text{or})\ p=3\end{array}$    
 2.(a)      Find and simplify the coefficient of $ \displaystyle x^7$ in the expansion of $ \displaystyle {{\left( {{{x}^{2}}+\frac{2}{x}} \right)}^{8}},x\ne 0$. 
(3 marks)
  Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ \text{In the expansion of}{{\left( {{{x}^{2}}+\displaystyle \frac{2}{x}} \right)}^{8}},x\ne 0\\\\\ \ \ \ \ {{(r+1)}^{{\text{th}}}}\ \text{term}={}^{8}{{C}_{r}}{{\left( {{{x}^{2}}} \right)}^{{8-r}}}{{\left( {\displaystyle \frac{2}{x}} \right)}^{r}}\\\\\therefore \ \ \ {{(r+1)}^{{\text{th}}}}\ \text{term}={}^{8}{{C}_{r}}{{2}^{r}}{{x}^{{16-3r}}}\\\\\therefore \ \ \ \text{For}\ {{x}^{7}},\ 16-3r=7\\\\\therefore \ \ \ r=3\\\\\therefore \ \ \ \text{Coefficient of}\ {{x}^{7}}={}^{8}{{C}_{3}}{{2}^{3}}\\\\\therefore \ \ \ \text{Coefficient of}\ {{x}^{7}}=\displaystyle \frac{{8\times 7\times 6}}{{1\times 2\times 3}}\times 8=448\end{array}$    
 2.(b)      Find the sum of all even numbers between $ \displaystyle 69$ and $ \displaystyle149.$ 
(3 marks)
  Show/Hide Solution
       All even numbers between $ \displaystyle 69$ and $ \displaystyle149.$ are $ \displaystyle 70, 72, 74,$ ... $ \displaystyle 148$.   
 3.(a)      The matrices $ \displaystyle A=\left( {\begin{array}{*{20}{c}} 2 & 0 \\ 0 & 5 \end{array}} \right)$ and $ \displaystyle B=\left( {\begin{array}{*{20}{c}} x & y \\ 0 & z \end{array}} \right)$ are  such that  $ \displaystyle AB=A+B$. Find the values of  $ \displaystyle x, y$ and  $ \displaystyle z$. 
(3 marks)
  Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ A=\left( {\begin{array}{*{20}{c}} 2 & 0 \\ 0 & 5 \end{array}} \right),\ B=\left( {\begin{array}{*{20}{c}} x & y \\ 0 & z \end{array}} \right)\\\\\ \ \ \ AB=A+B\,\ \ \left[ {\text{given}} \right]\\\\\therefore \,\ \ \left( {\begin{array}{*{20}{c}} 2 & 0 \\ 0 & 5 \end{array}} \right)\ \left( {\begin{array}{*{20}{c}} x & y \\ 0 & z \end{array}} \right)=\left( {\begin{array}{*{20}{c}} 2 & 0 \\ 0 & 5 \end{array}} \right)+\ \left( {\begin{array}{*{20}{c}} x & y \\ 0 & z \end{array}} \right)\\\\\therefore \,\ \ \left( {\begin{array}{*{20}{c}} {2x+0} & {2y+0} \\ 0 & {0+5z} \end{array}} \right)\ =\left( {\begin{array}{*{20}{c}} {2+x} & y \\ 0 & {5+z} \end{array}} \right)\\\\\therefore \ \ \ \left( {\begin{array}{*{20}{c}} {2x} & {2y} \\ 0 & {5z} \end{array}} \right)\ =\left( {\begin{array}{*{20}{c}} {2+x} & y \\ 0 & {5+z} \end{array}} \right)\\\\\therefore \ \ \ 2x=2+x\Rightarrow x=2\\\\\ \ \ \ \ 2y=y\Rightarrow y=0\\\\\ \ \ \ \ 5z=5+z\Rightarrow z=\displaystyle \frac{5}{4}\end{array}$    
 3.(b)      A die is thrown. If the probability of getting a number not less than x is $ \displaystyle \frac{2}{3}$, find $ \displaystyle x$. 
(3 marks)
  Show/Hide Solution
        Set of possible outcomes = $\ \displaystyle \left\{ {1,2,3,4,5,6} \right\}$  
 4.(a)      $ \displaystyle AT$ and $ \displaystyle BT$ are tangents to the circle $ \displaystyle ABC$ at $ \displaystyle  B$. Prove that $ \displaystyle \angle BTX=2\angle ACB$.
 4(a)2019 (3 marks)
  Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \gamma =\alpha =\beta \ \ \ \ \ \ (\angle \ \text{between tangents and chord}\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{=}\angle \ \text{in alternate segments)}\\\\\ \ \ \ \text{But}\ \theta =\alpha +\beta \ \ \ (\text{exterior }\angle \ \text{of a }\vartriangle \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{=}\ \text{sum of opposite interior }\angle \text{s)}\\\\\therefore \ \ \theta =\gamma +\gamma =2\gamma \\\\\therefore \ \ \angle BTX=2\angle ACB\end{array}$    
 4.(b)      The coordinates of $ \displaystyle A, B$ and $ \displaystyle C$ are $ \displaystyle (1,0), (4,2)$ and $ \displaystyle (5,4)$ respectively. Use vector method  to determine the coordinates of $ \displaystyle D$ if $ \displaystyle ABCD$ is a parallelogram. 
(3 marks)
  Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ A=(1,0),\ B=(4,2),\ C=(5,4)\\\\\ \ \ \ \ \text{Let}\ D=(a,b).\\\\\ \ \ \ \ ABCD\ \text{is a parallelogram}\text{.}\\\\\therefore \ \ \ \overrightarrow{{AD}}=\overrightarrow{{BC}}\\\\\therefore \ \ \ \overrightarrow{{OD}}-\overrightarrow{{OA}}=\overrightarrow{{OC}}-\overrightarrow{{OB}}\\\\\ \ \ \ \ \left( {\begin{array}{*{20}{c}} a \\ b \end{array}} \right)-\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\left( {\begin{array}{*{20}{c}} 5 \\ 4 \end{array}} \right)-\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)\\\\\therefore \ \ \ \ \left( {\begin{array}{*{20}{c}} {a-1} \\ b \end{array}} \right)=\left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right)\\\\\therefore \ \ \ a-1=2\Rightarrow a=2\\\\\ \ \ \ \ b=2\end{array}$    
 5.(a)       Solve the equation  $ \displaystyle 2\cos x \sin x = \sin x$ for $ \displaystyle 0{}^\circ \le x\le 360{}^\circ $. 
(3 marks)
  Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ 2\cos x\sin x=\sin x,\ 0{}^\circ \le x\le 360{}^\circ \\\\\ \ \ \ \ 2\cos x\sin x-\sin x=0\\\\\ \ \ \ \ \sin x\left( {2\cos x-1} \right)=0\\\\\ \ \ \ \ \sin x=0\ \left( {\text{or}} \right)\ 2\cos x-1=0\\\\\ \ \ \ \ \sin x=0\ \left( {\text{or}} \right)\ \cos x=\displaystyle \frac{1}{2}\\\\(\text{i})\ \ \text{For}\ \sin x=0,\\\\\ \ \ \ \ x=0{}^\circ \ \ \left( {\text{or}} \right)\ \ x=180{}^\circ \ \ \left( {\text{or}} \right)\ \ x=360{}^\circ \\\\(\text{i})\ \ \text{For}\ \cos x=\displaystyle \frac{1}{2},\\\\\ \ \ \ \ x=60{}^\circ \ \ \left( {\text{or}} \right)\ \ x=300{}^\circ \end{array}$    
 5.(b)      Differentiate $ \displaystyle x^3+2x$ with respect to $ \displaystyle x$ from the first principle.  
(3 marks)
   Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \text{Let}\ y={{x}^{3}}+2x.\\\\\therefore \ \ \ \ y+\delta y={{\left( {x+\delta x} \right)}^{3}}+2\left( {x+\delta x} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{3}}+3{{x}^{2}}\left( {\delta x} \right)+3x{{\left( {\delta x} \right)}^{2}}+{{\left( {\delta x} \right)}^{3}}+2x+2\left( {\delta x} \right)\\\\\therefore \ \ \ \delta y=\ \left( {y+\delta y} \right)-y\\\\\ \ \ \ \ \ \ \ \ \ \ \ =3{{x}^{2}}\left( {\delta x} \right)+3x{{\left( {\delta x} \right)}^{2}}+{{\left( {\delta x} \right)}^{3}}+2\left( {\delta x} \right)\\\\\therefore \ \ \ \displaystyle \frac{{\delta y}}{{\delta x}}=3{{x}^{2}}+3x\left( {\delta x} \right)+{{\left( {\delta x} \right)}^{2}}+2\end{array}$   
 
SECTION (B) (Answer any FOUR questions.) 6.(a)      The functions $ \displaystyle f$ and $ \displaystyle g$ are defined by $ \displaystyle f(x)=2x-1$ and $ \displaystyle g(x)=4x+3$. Find $ \displaystyle \left( {g\circ f} \right)(x)$ and $ \displaystyle {{g}^{{-1}}}(x)$ in simplified form. Show also that $ \displaystyle {{\left( {g\circ f} \right)}^{{-1}}}(x)=\left( {{{f}^{{-1}}}\circ {{g}^{{-1}}}} \right)(x)$. 
(5 marks)
  Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ f(x)=2x-1,\ \ g(x)=4x+3\\\\\ \ \ \ \ \ \ \ \left( {g\circ f} \right)(x)=g\left( {f(x)} \right)\\\\\therefore \ \ \ \ \ \ \left( {g\circ f} \right)(x)=g\left( {2x-1} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =4\left( {2x-1} \right)+3\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =8x-1\\\\\ \ \ \ \ \ \ \text{Let}\ {{g}^{{-1}}}(x)=y,\ \text{then}\\\\\ \ \ \ \ \ \ \ g(y)=x\\\\\ \ \ \ \ \ \ \ 4y+3=x\\\\\therefore \ \ \ \ \ \ y=\displaystyle \frac{{x-3}}{4}\\\\\therefore \ \ \ \ \ \ {{g}^{{-1}}}(x)=\displaystyle \frac{{x-3}}{4}\\\\\ \ \ \ \ \ \ \text{Let}\ \ {{\left( {g\circ f} \right)}^{{-1}}}(x)=z,\ \text{then}\\\\\ \ \ \ \ \ \ \left( {g\circ f} \right)(z)=x\\\\\ \ \ \ \ \ \ \ 8z-1=x\\\\\therefore \ \ \ \ \ \ z=\displaystyle \frac{{x+1}}{8}\\\\\therefore \ \ \ \ \ \ {{\left( {g\circ f} \right)}^{{-1}}}(x)=\displaystyle \frac{{x+1}}{8}\ \ \ ---(1)\\\\\ \ \ \ \ \ \ \text{Let}\ {{f}^{{-1}}}(x)=w,\ \text{then}\\\\\ \ \ \ \ \ \ \ f(w)=x\\\\\ \ \ \ \ \ \ \ 2w-1=x\\\\\therefore \ \ \ \ \ \ w=\displaystyle \frac{{x+1}}{2}\\\\\therefore \ \ \ \ \ \ {{f}^{{-1}}}(x)=\displaystyle \frac{{x+1}}{2}\\\\\therefore \ \ \ \ \ \left( {{{f}^{{-1}}}\circ {{g}^{{-1}}}} \right)(x)={{f}^{{-1}}}\left( {{{g}^{{-1}}}(x)} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{f}^{{-1}}}\left( {\displaystyle \frac{{x-3}}{4}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{\displaystyle \frac{{x-3}}{4}+1}}{2}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{x+1}}{8}\,---(2)\\\\\therefore \ \ \ \ \ \ \text{By}\ (1)\ \operatorname{and}\ (2),\ \\\\\ \ \ \ \ \ \ {{\left( {g\circ f} \right)}^{{-1}}}(x)=\left( {{{f}^{{-1}}}\circ {{g}^{{-1}}}} \right)(x)\end{array}$    
 6.(b)      The expression $ \displaystyle ax^3 - x^2 + bx - 1$ leaves the remainders of $ \displaystyle - 33$ and $ \displaystyle 77$ when divided by $ \displaystyle x + 2$ and $ \displaystyle x - 3$ respectively. Find the values of $ \displaystyle a$ and $ \displaystyle b$, and the remainder when divided by $ \displaystyle x - 2$. 
(5 marks)
Show/Hide Solution
       $ \displaystyle \text{Let}\ f(x)=a{{x}^{3}}-{{x}^{2}}+bx-1.$  
 7.(a)      A binary operation $ \displaystyle \odot$ on $ \displaystyle R$ is defined by $ \displaystyle x \odot y = (3y - x)^2 - 8y^2$. Show that the binary operation is commutative. Find the possible values of $ \displaystyle k$ such that $ \displaystyle 2 \odot k = -31$. 
(5 marks)
   Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ x\odot y={{(3y-x)}^{2}}-8{{y}^{2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =9{{y}^{2}}-6xy+{{x}^{2}}-8{{y}^{2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}-6xy+{{y}^{2}}\\\\\therefore \ \ \ y\odot x={{(3x-y)}^{2}}-8{{x}^{2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =9{{x}^{2}}-6xy+{{y}^{2}}-8{{x}^{2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}-6xy+{{y}^{2}}\\\\\therefore \ \ \ x\odot y=y\odot x\\\ \end{array}$   
 7.(b)       If the coefficients of $ \displaystyle x^r$ and $ \displaystyle x^{r+2}$ in the expansion of $ \displaystyle (1 + x)^{2n}$ are equal, show that $ \displaystyle r = n -1$. 
(5 marks)
   Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ {{(r+1)}^{{\text{th}}}}\text{ term in the expansion of}\ {{(1+x)}^{{2n}}}\\\\\ \ \ \ =\ \ {}^{{2n}}{{C}_{r}}{{x}^{r}}\\\\\therefore \ \ \ \ \ \text{Coefficient of }{{x}^{r}}={}^{{2n}}{{C}_{r}}\\\\\ \ \ \ \ \ \ \text{Coefficient of }{{x}^{{r+2}}}={}^{{2n}}{{C}_{{r+2}}}\\\\\ \ \ \ \ \ \ \text{By the problem, }\\\\\ \ \ \ \ \ \ {}^{{2n}}{{C}_{r}}={}^{{2n}}{{C}_{{r+2}}}\\\\\therefore \ \ \ \ \ r=r+2\ \text{which is impossible}\text{.}\\\\\ \ \ \ \ \ \text{But we have }{}^{{2n}}{{C}_{r}}={}^{{2n}}{{C}_{{2n-r}}}.\\\\\therefore \ \ \ \ {}^{{2n}}{{C}_{{2n-r}}}={}^{{2n}}{{C}_{{r+2}}}\\\\\therefore \ \ \ \ 2n-r=r+2\\\\\therefore \ \ \ \ 2r=2n-2\\\\\therefore \ \ \ \ r=n-1\end{array}$   
 8.(a)      Find the solution set in $ \displaystyle R$ of the inequation $ \displaystyle x^2-3x+2\le 0$ by algebraic method and illustrate it on the number line. 
(5 marks)
 Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ {{x}^{2}}-3x+2\le 0\\\\\therefore \ \ \ \ \ \ \left( {x-1} \right)(x-2)\le 0\\\\\therefore \ \ \ \ \ \ \text{There are two possibilities that}\\\\(\text{i})\ \ \ \ x-1\le 0\ \operatorname{and}\ x-2\ge 0\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{or}\\\\(\text{ii})\ \ \ \ x-1\ge 0\ \operatorname{and}\ x-2\le 0\ \\\\\\(\text{i})\ \ \ \ x-1\le 0\ \operatorname{and}\ x-2\ge 0\\\\\therefore \ \ \ \ \ \ x\le 1\ \operatorname{and}\ x\ge 2\end{array}$ 8a-1-2019 $ \displaystyle \therefore\ \ \ \ $ There is no point on the number line which satifies both conditions. 8a-2-2019 8a-3-2019   
 8.(b)      Find the sum of the first $ \displaystyle 12$ terms of the  $ \displaystyle A.P$.  $ \displaystyle  44, 40, 36,$ ... . Find also the sum of the terms between the  $ \displaystyle {{12}^{{\text{th}}}}$ term  and the $ \displaystyle {{26}^{{\text{th}}}}$ term of that $ \displaystyle A.P.$ 
(5 marks)
   Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ 44,40,36,...\ \text{is an}\ A.P.\\\\\therefore \ \ a=44,\\\\\ \ \ \ d=40-44=-4\\\\\ \ \ \ {{S}_{n}}=\displaystyle \frac{n}{2}\left\{ {2a+(n-1)d} \right\}\\\\\ \ \ \ {{S}_{{12}}}=\displaystyle \frac{{12}}{2}\left\{ {2\left( {44} \right)+(12-1)\left( {-4} \right)} \right\}\\\\\ \ \ \ {{S}_{{12}}}=264\\\\\ \ \ \ \text{Let the required sum be}\ S.\\\\\therefore \ \ S={{u}_{{13}}}+{{u}_{{14}}}+{{u}_{{15}}}+...+{{u}_{{25}}}\\\\\therefore \ \ S=\displaystyle \frac{{13}}{2}\left( {{{u}_{{13}}}+{{u}_{{25}}}} \right)\\\\\ \ \ \ \ \ \ \ \ =\displaystyle \frac{{13}}{2}\left( {a+12d+a+24d} \right)\\\\\ \ \ \ \ \ \ \ \ =13\left( {a+18d} \right)\\\\\ \ \ \ \ \ \ \ \ =13\left[ {44+18\left( {-4} \right)} \right]\\\\\ \ \ \ \ \ \ \ \ =-364\end{array}$   
 9.(a)      The sum of the first $ \displaystyle n$ terms of a certain sequence is given by $ \displaystyle {{S}_{{_{n}}}}={{2}^{n}}-1$. Find the first three terms of the sequence and express the $ \displaystyle {{n}^{{\text{th}}}}$ term in terms of $ \displaystyle n.$ 
(5 marks)
Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ \ {{S}_{{_{n}}}}={{2}^{n}}-1\\\\\therefore \ \ {{S}_{1}}={{2}^{1}}-1=1\\\\\ \ \ \ {{S}_{2}}={{2}^{2}}-1=3\\\\\ \ \ \ {{S}_{3}}={{2}^{3}}-1=7\\\\\therefore \ \ {{u}_{1}}={{S}_{1}}=1\\\\\ \ \ \ {{u}_{2}}={{S}_{2}}-{{S}_{1}}=2\\\\\ \ \ \ {{u}_{3}}={{S}_{3}}-{{S}_{2}}=4\\\\\therefore \ \ \ {{u}_{n}}={{S}_{n}}-{{S}_{{n-1}}}\\\\\ \ \ \ \ \ \ \ \ =\left( {{{2}^{n}}-1} \right)-\left( {{{2}^{{n-1}}}-1} \right)\\\\\ \ \ \ \ \ \ \ \ ={{2}^{n}}-{{2}^{{n-1}}}\\\\\ \ \ \ \ \ \ \ \ ={{2}^{n}}\left( {1-\displaystyle \frac{1}{2}} \right)\\\\\ \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{2}^{n}}}}{2}\\\\\ \ \ \ \ \ \ \ \ ={{2}^{{n-1}}}\end{array}$    
 9.(b)      Using the definition of inverse matrix, find the inverse of the matrix $ \displaystyle \left( {\begin{array}{*{20}{c}} 3 & 1 \\ 2 & 1 \end{array}} \right)$. 
(5 marks)
   Show/Hide Solution
        Let $ \displaystyle A=\left( {\begin{array}{*{20}{c}} 3 & 1 \\ 2 & 1 \end{array}} \right)$ and $\displaystyle {{A}^{{-1}}}=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)$  
 10.(a)    Find the inverse of the matrix $ \displaystyle \left( {\begin{array}{*{20}{c}} 5 & 6 \\ 7 & 8 \end{array}} \right)$. Use it to determine the coordinate of the point of intersection of the lines $ \displaystyle 5x + 6y=7$ and $ \displaystyle 8y + 7x = 10$. 
(5 marks)
   Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \text{Let}\ A=\ \left( {\begin{array}{*{20}{c}} 5 & 6 \\ 7 & 8 \end{array}} \right).\\\\\therefore \ \ \ \ \det A=40-42=-2\ne 0\\\\\therefore \ \ \ \ {{A}^{{-1}}}\ \text{exists}\text{.}\ \\\\\therefore \ \ \ \ {{A}^{{-1}}}=\displaystyle \frac{1}{{\det A}}\left( {\begin{array}{*{20}{c}} 8 & {-6} \\ {-7} & 5 \end{array}} \right)\ \\\\\ \ \ \ \ \ \ \ \ \ \ \ =-\displaystyle \frac{1}{2}\left( {\begin{array}{*{20}{c}} 8 & {-6} \\ {-7} & 5 \end{array}} \right)\\\\\ \ \ \ \ \left. \begin{array}{l}\ 5x+6y=7\\\ 8y+7x=10\end{array} \right\}\ \ \ \ \left( {\text{given}} \right)\\\\\ \ \ \ \ \left. \begin{array}{l}\ 5x+6y=7\\\ 7x+8y=10\end{array} \right\}---(1)\\\\\ \ \ \ \ \text{Transforming into matrix form,}\\\\\ \ \ \ \ \left( {\begin{array}{*{20}{c}} 5 & 6 \\ 7 & 8 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right)\ =\left( {\begin{array}{*{20}{c}} 7 \\ {10} \end{array}} \right)---(2)\\\\\ \ \ \ \ \text{Let}\ X=\ \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right)\ \operatorname{and}\ B=\left( {\begin{array}{*{20}{c}} 7 \\ {10} \end{array}} \right).\\\\\ \therefore \ \ \text{The matrix equation becomes,}\\\\\ \ \ \ \ AX=B\\\\\therefore \ \ \ {{A}^{{-1}}}AX={{A}^{{-1}}}B\\\\\ \ \ \ \ IX={{A}^{{-1}}}B\\\\\therefore \ \ \ X={{A}^{{-1}}}B\\\\\therefore \ \ \ \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right)=-\displaystyle \frac{1}{2}\left( {\begin{array}{*{20}{c}} 8 & {-6} \\ {-7} & 5 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 7 \\ {10} \end{array}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ =-\displaystyle \frac{1}{2}\left( {\begin{array}{*{20}{c}} {56-60} \\ {-49+50} \end{array}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ =-\displaystyle \frac{1}{2}\left( {\begin{array}{*{20}{c}} {-4} \\ 1 \end{array}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ =\left( {\begin{array}{*{20}{c}} 2 \\ {-\displaystyle \frac{1}{2}} \end{array}} \right)\\\\\therefore \ \ x=2,\ \ y=-\displaystyle \frac{1}{2}\end{array}$   
 10.(b)      Construct the table of outcomes for rolling two dice. 
(5 marks)
   Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\ \ \ \ \ \ \ \ \ \ \ {{\text{2}}^{{\text{nd}}}}\ \text{die}\\ \ {{\text{1}}^{{\text{st}}}}\ \text{die}\ \ \ \begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & {(1,1)} & {(1,2)} & {(1,3)} & {(1,4)} & {(1,5)} & {(1,6)} \\ \hline  2 & {(2,1)} & {(2,2)} & {(2,3)} & {(2,4)} & {(2,5)} & {(2,6)} \\ \hline  3 & {(3,1)} & {(3,2)} & {(3,3)} & {(3,4)} & {(3,5)} & {(3,6)} \\ \hline  4 & {(4,1)} & {(4,2)} & {(4,3)} & {(4,4)} & {(4,5)} & {(4,6)} \\ \hline  5 & {(5,1)} & {(5,2)} & {(5,3)} & {(5,4)} & {(5,5)} & {(5,6)} \\ \hline  6 & {(6,1)} & {(6,2)} & {(6,3)} & {(6,4)} & {(6,5)} & {(6,6)} \\ \hline\end{array}\end{array}$ 
 $ \displaystyle \therefore \ \ \ $ Number of possible outcomes = $ \displaystyle 36$   
 
SECTION (C) (Answer any THREE questions.) 11.(a)    $ \displaystyle PT$ is a tangent and $ \displaystyle PQR$ is a secant to a circle. A circle with $ \displaystyle T$ as centre and radius $ \displaystyle TQ$ meets $ \displaystyle QR$ again at $ \displaystyle S$. Prove that $ \displaystyle \angle RTS=\angle RPT$ 
(5 marks)
   Show/Hide Solution
        11(a)2019   
 11.(b)     In the diagram,  $ \displaystyle P$ is the point on  $ \displaystyle AC$ such that  $ \displaystyle AP=3PC$,  $ \displaystyle R$ is the point on  $ \displaystyle BP$ such that  $ \displaystyle BR=2RP$ and $ \displaystyle QR\parallel AC$. Given that $ \displaystyle \alpha \left( {\Delta BPA} \right)=36\ \text{c}{{\text{m}}^{\text{2}}}$, calculate $ \displaystyle \alpha \left( {\Delta BPC} \right)$ and $ \displaystyle \alpha \left( {\Delta BRQ} \right)$. 
11(b)2019 (5 marks)
Show/Hide Solution
       $ \displaystyle \begin{array}{l}\ \ \ AP=3PC\\\\\ \ \ BR=2RP\\\\\ \ \ QR\parallel AC\\\\\ \ \ \alpha (\Delta BPA)=36\ \text{c}{{\text{m}}^{2}}\\\\\ \ \ \text{Since }\Delta BPA\ \operatorname{and}\ \Delta BPC\ \\\ \ \ \text{have the same altitude,}\\\\\,\ \ \displaystyle \frac{{\alpha \left( {\Delta BPC} \right)}}{{\alpha \left( {\Delta BPA} \right)}}=\displaystyle \frac{{PC}}{{AP}}\\\\\therefore \displaystyle \frac{{\alpha \left( {\Delta BPC} \right)}}{{36}}=\displaystyle \frac{{PC}}{{3PC}}\\\\\therefore \alpha \left( {\Delta BPC} \right)=12\ \text{c}{{\text{m}}^{2}}\\\\\ \ \ \text{Since }QR\parallel AC,\\\\\ \ \ \Delta BRQ\sim \Delta BPA\\\\\therefore \displaystyle \frac{{\alpha \left( {\Delta BRQ} \right)}}{{\alpha \left( {\Delta BPA} \right)}}=\displaystyle \frac{{B{{R}^{2}}}}{{B{{P}^{2}}}}\\\\\therefore \displaystyle \frac{{\alpha \left( {\Delta BRQ} \right)}}{{\alpha \left( {\Delta BPA} \right)}}=\displaystyle \frac{{B{{R}^{2}}}}{{{{{(BR+RP)}}^{2}}}}\\\\\therefore \displaystyle \frac{{\alpha \left( {\Delta BRQ} \right)}}{{\alpha \left( {\Delta BPA} \right)}}=\displaystyle \frac{{{{{\left( {2RP} \right)}}^{2}}}}{{{{{(2RP+RP)}}^{2}}}}\\\ \ \ \left[ {\because BR=2RP} \right]\\\\\therefore \displaystyle \frac{{\alpha \left( {\Delta BRQ} \right)}}{{36}}=\displaystyle \frac{4}{9}\\\\\therefore \alpha \left( {\Delta BRQ} \right)=16\ \text{c}{{\text{m}}^{2}}\ \ \text{ }\end{array}$    
 12.(a)    Prove that the quadrilateral formed by producing the bisectors of the interior angles of any quadrilateral is cyclic. 
(5 marks)
  Show/Hide Solution
       12(a)2019  
 12.(b)      If $ \displaystyle \alpha +\beta +\gamma =180{}^\circ $, prove that $ \displaystyle \tan \frac{\alpha }{2}\tan \frac{\beta }{2}+\tan \frac{\beta }{2}\tan \frac{\gamma }{2}+\tan \frac{\alpha }{2}\tan \frac{\gamma }{2}=1$. 
(5 marks)
   Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ \alpha +\beta +\gamma =180{}^\circ \\\\\therefore \ \ \ \displaystyle \frac{{\alpha +\beta +\gamma }}{2}=90{}^\circ \\\\\therefore \ \ \ \displaystyle \frac{\alpha }{2}+\displaystyle \frac{\beta }{2}+\displaystyle \frac{\gamma }{2}=90{}^\circ \\\\\therefore \ \ \ \displaystyle \frac{\alpha }{2}+\displaystyle \frac{\beta }{2}=90{}^\circ -\displaystyle \frac{\gamma }{2}\\\\\therefore \ \ \tan \left( {\ \displaystyle \frac{\alpha }{2}+\displaystyle \frac{\beta }{2}} \right)=\tan \left( {90{}^\circ -\displaystyle \frac{\gamma }{2}} \right)\\\\\therefore \ \ \displaystyle \frac{{\tan \left( {\displaystyle \frac{\alpha }{2}} \right)+\tan \left( {\displaystyle \frac{\beta }{2}} \right)}}{{1-\tan \left( {\displaystyle \frac{\alpha }{2}} \right)\tan \left( {\displaystyle \frac{\beta }{2}} \right)}}=\cot \displaystyle \frac{\gamma }{2}\\\\\therefore \ \ \displaystyle \frac{{\tan \left( {\displaystyle \frac{\alpha }{2}} \right)+\tan \left( {\displaystyle \frac{\beta }{2}} \right)}}{{1-\tan \left( {\displaystyle \frac{\alpha }{2}} \right)\tan \left( {\displaystyle \frac{\beta }{2}} \right)}}=\displaystyle \frac{1}{{\tan \displaystyle \frac{\gamma }{2}}}\\\\\therefore \ \ \tan \displaystyle \frac{\beta }{2}\tan \displaystyle \frac{\gamma }{2}+\tan \displaystyle \frac{\alpha }{2}\tan \displaystyle \frac{\gamma }{2}=1-\tan \displaystyle \frac{\alpha }{2}\tan \displaystyle \frac{\beta }{2}\\\\\therefore \ \ \ \tan \displaystyle \frac{\alpha }{2}\tan \displaystyle \frac{\beta }{2}+\tan \displaystyle \frac{\beta }{2}\tan \displaystyle \frac{\gamma }{2}+\tan \displaystyle \frac{\alpha }{2}\tan \displaystyle \frac{\gamma }{2}=1\end{array}$  =========================================   ျဖစ္ရပ္အတြက္ အဓိပၸာယ္ မသတ္မွတ္ႏိုင္ပါ။ Credit : Dr. Aung Kyaw  ဆရာ ေသာ္ဇင္ထြန္း    
 13.(a)    In $ \displaystyle \Delta ABC$, if $ \displaystyle \angle B=\angle A+15{}^\circ $, $ \displaystyle \angle C=\angle B+15{}^\circ $ and  $ \displaystyle BC=6$, find  $ \displaystyle AC$. 
(5 marks)
   Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \text{In}\ \Delta ABC,\ BC=6\\\\\ \ \ \angle B=\angle A+15{}^\circ \\\\\ \ \ \angle C=\angle B+15{}^\circ \\\\\therefore \ \ \angle C=\angle A+15{}^\circ +15{}^\circ \\\\\ \ \ \ \ \ \ \ \ =\angle A+30{}^\circ \\\\\ \ \ \text{Since}\,\angle A+\angle B+\angle C=180{}^\circ ,\\\\\ \ \ \angle A+\angle A+15{}^\circ +\angle A+30{}^\circ =180{}^\circ \\\\\therefore \ 3\angle A=135{}^\circ \\\\\therefore \ \angle A=45{}^\circ \\\\\therefore \ \angle B=60{}^\circ \ \operatorname{and}\ \angle C=75{}^\circ \\\\\ \ \ \text{By the law of sines,}\\\\\ \ \ \displaystyle \frac{{AC}}{{\sin B}}=\displaystyle \frac{{BC}}{{\sin A}}\\\\\therefore \ \ AC=\displaystyle \frac{{BC\sin B}}{{\sin A}}\\\\\therefore \ \ AC=\displaystyle \frac{{BC\sin 60{}^\circ }}{{\sin 45{}^\circ }}\\\\\therefore \ \ AC=6\times \displaystyle \frac{{\sqrt{3}}}{2}\times \sqrt{2}=3\sqrt{6}\end{array}$    
 13.(b)       If $ \displaystyle y = \ln (\sin^3 2x)$, then prove that If $ \displaystyle 3(\frac{{d}^{2}y}{d{x}^{2}}) + (\frac{dy}{dx})^2+36=0$. 
(5 marks)
Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ y=\ln ({{\sin }^{3}}2x)\ \ \\\ \\\ \ \ \ \   =\ln {{(\sin 2x)}^{3}}\\\\\ \ \ \ \    =3\ln (\sin 2x)\end{array}$  
 14.(a)    In the quadrilateral $ \displaystyle ABCD$, $ \displaystyle M$ and $ \displaystyle N$ are the midpoints of $ \displaystyle AC$ and $ \displaystyle BD$ respectively, prove that  $ \displaystyle \overrightarrow{{AB}}+\ \overrightarrow{{CB}}+\ \overrightarrow{{AD}}+\ \overrightarrow{{CD}}=4\ \overrightarrow{{MN}}$. 
(5 marks)
Show/Hide Solution
        $ \displaystyle \begin{array}{l}\ \ \ \ \ \ \text{Let }O\text{ be the origin}\text{.}\\\\\therefore \ \ \ \ \overrightarrow{{AB}}+\ \overrightarrow{{CB}}+\ \overrightarrow{{AD}}+\ \overrightarrow{{CD}}\\\\\ \ \ =\ \overrightarrow{{OB}}-\overrightarrow{{OA}}+\ \overrightarrow{{OB}}-\overrightarrow{{OC}}+\ \overrightarrow{{OD}}-\overrightarrow{{OA}}+\ \overrightarrow{{OD}}-\overrightarrow{{OC}}\\\\\ \ \ =2\left( {\overrightarrow{{OB}}+\overrightarrow{{OD}}-\overrightarrow{{OA}}-\overrightarrow{{OC}}} \right)\ \\\\\ \ \ \ \ \ \text{Since }M\text{ and }N\text{ are the midpoints of }AC\text{ and }BD\text{.}\\\\\ \ \ \ \ \ \overrightarrow{{OM}}=\displaystyle \frac{1}{2}\ \left( {\overrightarrow{{OA}}+\ \overrightarrow{{OC}}} \right)\\\\\ \ \ \ \ \ \overrightarrow{{ON}}=\displaystyle \frac{1}{2}\ \left( {\overrightarrow{{OB}}+\ \overrightarrow{{OD}}} \right)\\\\\therefore \ \ \ \ \ \overrightarrow{{MN}}=\ \overrightarrow{{ON}}-\overrightarrow{{OM}}\\\\\,\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{1}{2}\left( {\overrightarrow{{OB}}+\overrightarrow{{OD}}-\overrightarrow{{OA}}-\overrightarrow{{OC}}} \right)\\\text{ }\\\therefore \ \ \ \ \ 4\overrightarrow{{MN}}=2\left( {\overrightarrow{{OB}}+\overrightarrow{{OD}}-\overrightarrow{{OA}}-\overrightarrow{{OC}}} \right)\\\\\therefore \ \ \ \ \overrightarrow{{AB}}+\ \overrightarrow{{CB}}+\ \overrightarrow{{AD}}+\ \overrightarrow{{CD}}=4\overrightarrow{{MN}}\end{array}$    
 14.(b)      Find the normals to the curve $ \displaystyle xy+2x-y=0$ that are parallel to the line $ \displaystyle 2x + y = 0$. 
(5 marks)
   Show/Hide Solution
       14(b)2019 ပံုဆြဲရန္မလိုပါ