‏إظهار الرسائل ذات التسميات indefinite integral. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات indefinite integral. إظهار كافة الرسائل

الجمعة، 6 أغسطس 2021

Indefinite Integration

Antiderivative ဟာ Grade 12 သင်ရိုးတွင် ပြဌာန်းလာမည့် သင်ခန်းစာတစ်ခုဖြစ်ပါတယ်။ သင်ခန်းစာရှင်းလင်းချက်များကို ဒီနေရာမှာ ရေခဲ့ဖူးပါတယ်။ အဆိုပါ post နှင့် ယှဉ်တွဲလေ့လာပြီး အောက်ပါ လေ့ကျင့်ခန်းများကို လေ့လာ လေ့ကျင့်ကြည့်နိုင်ပါတယ်။ စဉ်ဆက်မပြတ် လေ့လာသင်ယူနိုင်ကြပါစေ။


Rules of Integration

$\begin{array}{l} \text { 1. } \displaystyle\int k \ \mathrm{d}x=k x+c \\\\ \text { 2. } \displaystyle\int f^{\prime}(x) \ \mathrm{d}x=f(x)+c \\\\ \text { 3. } \displaystyle\int x^{n} \ \mathrm{d}x=\dfrac{x^{n+1}}{n+1}+c \\\\ \text { 4. } \displaystyle\int k f(x) \ \mathrm{d}x=k \displaystyle\int f(x) \ \mathrm{d}x\\\\ \text { 5. } \displaystyle\int\left[f(x) \pm g(x)\right] \ \mathrm{d}x = \displaystyle\int f(x) \ \mathrm{d}x \pm \displaystyle\int g(x) \ \mathrm{d}x \end{array}$
  1. Integrate each of the following with respect to $x$.
    (a) $x^3$
    (b) $3\sqrt{x}$
    (c) $\dfrac{2}{x^2}$
    (d) $\dfrac{1}{2\sqrt{x}}$
    (e) $(3x+5)\ \mathrm{d}x$


  2. $\begin{aligned} \text{(a)}\ \displaystyle\int x^3\ \mathrm{d}x &=\dfrac{x^{3+1}}{3+1}+C\\\\ &=\dfrac{x^4}{4}+C \end{aligned}$

    $\begin{aligned} \text{(b)}\ \displaystyle\int 3\sqrt{x} \ \mathrm{d}x &=3\cdot \displaystyle\int \sqrt{x}\ \mathrm{d}x\\\\ &=3\cdot \displaystyle\int x^{\frac{1}{2}}\ \mathrm{d}x\\\\ &=3\cdot \dfrac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C\\\\ &=2x^{\frac{3}{2}}+C \end{aligned}$

    $\begin{aligned} \text{(c)}\ \displaystyle\int \dfrac{2}{x^2}\ \mathrm{d}x &=2\cdot \displaystyle\int x^{-2}\ \mathrm{d}x\\\\ &=2\cdot \dfrac{x^{-2+1}}{-2+1} + C\\\\ &=-\dfrac{2}{x}+C \end{aligned}$

    $\begin{aligned} \text{(d)}\ \displaystyle\int \dfrac{2}{x^2}\ \mathrm{d}x &=\dfrac{1}{2}\cdot \displaystyle\int \dfrac{1}{x^{\frac{1}{2}}}\ \mathrm{d}x\\\\ &=\dfrac{1}{2}\cdot \displaystyle\int x^{-\frac{1}{2}}\ \mathrm{d}x\\\\ &=\dfrac{1}{2}\cdot \dfrac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C\\\\ &=\sqrt{x}+C \end{aligned}$

    $\begin{aligned} \text{(e)}\ \displaystyle\int (3x+5)\ \mathrm{d}x &= \displaystyle\int (3x)\ \mathrm{d}x+ \displaystyle\int (5)\ \mathrm{d}x\\\\ &= \frac{3x^2}{2}+5x+C \end{aligned}$

  3. Find each of the following indefinite integrals.

    (a) $ \displaystyle\int (3x − 1)(x + 2)\ \mathrm{d}x$

    (b) $ \displaystyle\int\left(3 x^{3}-4 \sqrt{x}+3\right) \ \mathrm{d}x$

    (c) $ \displaystyle\int\left(6 x^{2}-\dfrac{4}{x^{2}}\right) \ \mathrm{d}x$

    (d) $ \displaystyle\int\left(5-\dfrac{1}{\sqrt{x}}+\dfrac{1}{x^{3}}\right) \ \mathrm{d}x$

    (e) $ \displaystyle\int \dfrac{x^{4}+5 x}{2 x^{3}} \ \mathrm{d}x$


  4. $\begin{aligned} \text{(a)}\ \quad\quad &\displaystyle\int \left(3x-1\right)\left(x+2\right)\ \mathrm{d}x\\\\ =& \displaystyle\int (3x^2+5x-2)\ \mathrm{d}x\\\\ =& \displaystyle\int 3x^2\ \mathrm{d}x+ \displaystyle\int 5x\ \mathrm{d}x- \displaystyle\int 2\ \mathrm{d}x\\\\ =& x^3+\frac{5x^2}{2}-2x+C\\\\ \end{aligned}$

    $\begin{aligned} \text{(b)}\quad\quad& \displaystyle\int\left(3 x^{3}-4 \sqrt{x}+3\right) \mathrm{d} x \\\\ =& \displaystyle\int 3 x^{3} \mathrm{~d} x-\displaystyle\int 4 \sqrt{x} \mathrm{~d} x+\displaystyle\int 3 \mathrm{~d} x \\\\ =& \displaystyle\int 3 x^{3} \ \mathrm{d}x-\displaystyle\int 4 x^{\frac{1}{2}} \ \mathrm{d}x+\displaystyle\int 3 \ \mathrm{d}x \\\\ =& \dfrac{3 x^{4}}{4}-\dfrac{4 x^{\frac{3}{2}}}{\frac{3}{2}}+3 x+C \\\\ =& \dfrac{3}{4} x^{4}-\dfrac{8}{3} x^{\frac{3}{2}}+3 x+C \end{aligned}$

    $\begin{aligned} \text{(c)}\quad\quad & \displaystyle\int\left(6 x^{2}-\dfrac{4}{x^{2}}\right) \ \mathrm{d}x \\\\ =& \displaystyle\int 6 x^{2} \ \mathrm{d}x-\displaystyle\int \dfrac{4}{x^{2}} \ \mathrm{d}x \\\\ =& \displaystyle\int 6 x^{2} \ \mathrm{d}x-\displaystyle\int 4 x^{-2} \ \mathrm{d}x \\\\ =& \dfrac{6 x^{3}}{3}-\dfrac{4 x^{-1}}{-1}+C \\\\ =& 2 x^{3}+\dfrac{4}{x} \end{aligned}$

    $\begin{aligned} \text{ (d) }\quad\quad & \displaystyle\int\left(5-\dfrac{1}{\sqrt{x}}+\dfrac{1}{x^{3}}\right) \mathrm{~d} x \\\\ =& \displaystyle\int 5 \mathrm{~d} x-\displaystyle\int x^{-\frac{1}{2}} \mathrm{~d} x+\displaystyle\int x^{-3} \mathrm{~d} x \\\\ =& 5 x-\dfrac{x^{\frac{1}{2}}}{\frac{1}{2}}+\frac{x^{-2}}{2}+C \\\\ =& 5 x-2 \sqrt{x}+\dfrac{1}{2 x^{2}}+C \end{aligned}$

    $\begin{aligned} \text{(e)}\quad\quad& \displaystyle\int \dfrac{x^{4}+5 x}{2 x^{3}} \mathrm{~d} x \\\\ =& \displaystyle\int \dfrac{x^{4}}{2 x^{3}} \mathrm{~d} x+\displaystyle\int \dfrac{5 x}{2 x^{3}} \mathrm{~d} x \\\\ =& \displaystyle\int \dfrac{1}{2} x \mathrm{~d} x+\displaystyle\int \dfrac{5}{2} x^{-2} \mathrm{~d} x \\\\ =& \dfrac{1}{2} \cdot \dfrac{x^{2}}{2}+\dfrac{5}{2} \dfrac{x^{-1}}{-1}+C \\\\ =& \dfrac{1}{4} x^{2}-\dfrac{5}{2 x}+C \end{aligned}$

  5. Find each of the following indefinite integrals.

    (a) $\displaystyle\int \dfrac{3 x}{2 \sqrt[5]{x^{2}}} \mathrm{~d} x$

    (b) $\displaystyle\int \dfrac{(3 x-1)^{2}}{5 x^{4}} \mathrm{~d} x$

    (c) $\displaystyle\int \dfrac{3 x^{7}+x^{2}}{2 \sqrt[3]{x}} \mathrm{~d} x$

    (d) $\displaystyle\int(x-3 \sqrt{x})^{2} \mathrm{~d} x$

    (e) $\displaystyle\int(1+\sqrt[4]{x})(1-\sqrt[4]{x}) \mathrm{d} x$

    (f) $\displaystyle\int\left(\sqrt[3]{x}+\dfrac{2}{\sqrt[3]{x}}\right)^{2} \mathrm{~d} x$


  6. $\begin{aligned} \text { (a) } \quad\quad&\displaystyle\int \frac{3 x}{2 \sqrt[5]{x^{2}}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{3 x}{2 x^{\frac{2}{5}}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{3}{2} \cdot x^{-\frac{3}{2}} \mathrm{~d} x \\\\ =&\dfrac{3}{2} \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}+C \\\\ =&-\dfrac{3}{\sqrt{x}}+C \end{aligned}$

    $\begin{aligned} \text { (b) } \quad\quad&\displaystyle\int \frac{(3 x-1)^{2}}{5 x^{4}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{9 x^{2}-6 x+1}{5 x^{4}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{9}{5} x^{-2} \mathrm{~d} x-\displaystyle\int \dfrac{6}{5} x^{-3} \mathrm{~d} x+\displaystyle\int \dfrac{1}{5} x^{-4} \mathrm{~d} x \\\\ =&\dfrac{9}{5} \dfrac{x^{-1}}{-1}-\dfrac{6}{5} \dfrac{x^{-2}}{-2}+\dfrac{1}{5} \dfrac{x^{-3}}{-3}+C \\\\ =&-\dfrac{9}{5 x}+\dfrac{6}{5 x^{2}}-\dfrac{1}{15 x^{3}}+C \end{aligned}$

    $\begin{aligned} \text { (c) }\quad\quad& \displaystyle\int \dfrac{3 x^{7}+x^{2}}{2 \sqrt[3]{x}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{3 x^{7}}{2 \sqrt[3]{x}} \mathrm{~d} x+\displaystyle\int \dfrac{x^{2}}{2 \sqrt[3]{x}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{3}{2} \dfrac{x^{7}}{x^{\frac{1}{3}}} \mathrm{~d} x+\displaystyle\int \dfrac{1}{2} \dfrac{x^{2}}{x^{\frac{1}{3}}} \mathrm{~d} x \\\\ =&\displaystyle\int \dfrac{3}{2} x^{\frac{20}{3}} \mathrm{~d} x+\displaystyle\int \dfrac{1}{2} x^{\frac{5}{3}} \mathrm{~d} x\\\\ =&\dfrac{3}{2} \dfrac{x^{\frac{23}{3}}}{\frac{23}{3}}+\dfrac{1}{2} \dfrac{x^{\frac{8}{3}}}{\frac{8}{3}}+C \\ =&\dfrac{9}{46} x^{\frac{23}{3}}+\dfrac{3}{16} x^{\frac{8}{3}}+C \end{aligned}$

    $\begin{aligned} \text { (d) } \quad\quad&\displaystyle\int(x-3 \sqrt{x})^{2} \mathrm{~d} x \\\\ =&\displaystyle\int\left(x^{2}-6 x \sqrt{x}+9 x\right) \mathrm{~d} x \\\\ =&\displaystyle\int x^{2} \mathrm{~d} x-\displaystyle\int 6 x^{\frac{3}{2}} \mathrm{~d} x+9 x \mathrm{~d} x \\\\ =&\dfrac{x^{2}}{3}-6 \dfrac{x^{\frac{3}{2}}}{\frac{3}{2}}+9 \dfrac{x^{2}}{2}+C \\\\ =&\dfrac{1}{3} x^{2}-4 x^{\frac{3}{2}}+\dfrac{9}{2} x^{2}+C \end{aligned}$

    $\begin{aligned} \text { (e) } \quad\quad&\displaystyle\int(1+\sqrt[4]{x})(1-\sqrt[4]{x}) \mathrm{d} x \\\\ =&\displaystyle\int\left(1-(\sqrt[4]{x})^{2}\right) \mathrm{~d} x \\\\ =&\displaystyle\int\left(1-x^{\frac{1}{2}}\right) \mathrm{~d} x \\\\ =&\displaystyle\int 1 \mathrm{~d} x-\displaystyle\int x^{1 / 2} \mathrm{~d} x \\\\ =&x-\dfrac{x^{\frac{3}{2}}}{\frac{3}{2}}+C \\\\ =&x-\dfrac{2}{3} x^{\frac{3}{2}}+C \end{aligned}$

    $\begin{aligned} \text { (f) } \quad\quad&\displaystyle\int\left(\sqrt[3]{x}+\frac{2}{\sqrt[3]{x}}\right)^{2} \mathrm{~d} x \\\\ =& \displaystyle\int\left(x^{\frac{1}{3}}+\dfrac{2}{x^{\frac{1}{3}}}\right)^{2} \mathrm{~d} x \\\\ =& \displaystyle\int\left(x^{\frac{2}{3}}+4+\dfrac{4}{x^{\frac{2}{3}}}\right) \mathrm{~d} x \\\\ =& \displaystyle\int x^{\frac{3}{2}} \mathrm{~d} x+\displaystyle\int 4 \mathrm{~d} x+\displaystyle\int 4 x^{-\frac{2}{3}} \mathrm{~d} x \\\\ =& \dfrac{x^{\frac{5}{2}}}{\frac{5}{2}}+4 x+4 \cdot \dfrac{x^{\frac{1}{3}}}{\frac{1}{3}}+C \\\\ =& \dfrac{2}{5} x^{\frac{5}{2}}+4 x+12 x^{\frac{1}{3}}+C \end{aligned}$

  7. The rate of change of A with respect to r is given by $\dfrac{dA}{dr}= 4r+7$. If $A = 12$ when $r = 1$,find $A$ in terms of $r$.


  8. $\begin{aligned} \dfrac{\mathrm{~d} A}{\mathrm{~d} r}=&4 r+7 \\\\ A=&\displaystyle\int \mathrm{~d} A \\\\ =&\displaystyle\int \frac{\mathrm{~d} A}{\mathrm{~d} r} \cdot \mathrm{~d} r \\\\ =&\displaystyle\int(4 r+7) \mathrm{~d} r\\\\ =&\displaystyle\int 4 r \cdot \mathrm{~d} r+\displaystyle\int 7 \mathrm{~d} r \\\\ =&2 r^{2}+7 r+C \\\\ \text { When }\ r=1,\ & A=12 \\\\ \therefore\ 12=&2+7+C \\\\ \therefore\ C=&3 . \\\\ \therefore\ A=&2 r^{2}+7 r+3 \end{aligned}$

  9. Given that the gradient of a curve is $2x^2 + 7x$ and that the curve passes through the origin, determine the equation of the curve.


  10. Let the given curve be $y$.
    $\begin{aligned} &\quad\text { Gradient of the curve } \\\\ &=\dfrac{\mathrm{~d}y}{\mathrm{~d}x}\\\\ &=2 x^{2}+7 x \\\\ &y=\displaystyle\int \mathrm{~d}y \\\\ &=\displaystyle\int \dfrac{\mathrm{~d}y}{\mathrm{~d}x} \mathrm{~d}x \\\\ &=\displaystyle\int\left(2 x^{2}+7 x\right) \mathrm{~d}x \\\\ &=\dfrac{2}{3} x^{3}+\dfrac{7}{2} x^{2}+C \end{aligned}$
    through the origin $(0,0)$,
    $\begin{aligned} 0 &=\dfrac{3}{2}(0)^{3}+\dfrac{7}{2}(0)^{2}+C \\\\ \therefore C &=0 \end{aligned}$
    Hence, the equation the curve is $y=\dfrac{2}{3} x^{3}+\dfrac{7}{2} x^{2}$

  11. A curve is such that $\dfrac{dy}{dx}=k\sqrt[3]{x}$ , where $k$ is a constant and that it passes through the points $(1, 4)$ and $(8, 16)$. Find the equation of the curve.


  12. $\begin{aligned} \dfrac{d y}{\mathrm{~d}x} &=k \sqrt[3]{x} \\\\ y &=\displaystyle\int \mathrm{~d}y \\\\ &=\displaystyle\int \dfrac{d y}{\mathrm{~d}x} \cdot \mathrm{~d}x \\\\ &=\displaystyle\int k \sqrt[3]{x} \mathrm{~d}x \\\\ &=k \displaystyle\int x^{\frac{1}{3}} \mathrm{~d}x \\\\ &=\dfrac{3 k}{4} x^{\frac{4}{3}}+C\\\\ \end{aligned}$
    Since the curve passes through the point $(1,4)$ and $(8,16)$
    $\begin{array}{l} 4=\dfrac{3 k}{4}+c\\\\ \therefore\ 3 k+4 C=16 \ldots(1)\\\\ 16=\dfrac{3 k}{4}(8)^{\frac{4}{3}}+C\\\\ 12 k+C=16\ldots(2) \end{array}$
    Solving equatione $(1)$ and $(2)$,
    $\begin{array}{l} k=\dfrac{16}{15}, c=\dfrac{16}{5} \\\\ \therefore\ y=\dfrac{4}{5} x^{\frac{4}{3}}+\dfrac{16}{5} \end{array}$

  13. The gradient of a curve at the point $(x, y)$ on the curve is given by $\dfrac{x^{2}-4}{x^{2}}$. Given that the curve passes through the point $(2,7)$, find the equation of the curve.


  14. $\begin{aligned} \dfrac{d y}{\mathrm{~d}x} &=\dfrac{x^{2}-4}{x^{2}} \\\\ y &=\displaystyle \int \mathrm{~d}y \\\\ &=\displaystyle \int \dfrac{d y}{\mathrm{~d}x} \cdot \mathrm{~d}x \\\\ &=\displaystyle \int \dfrac{x^{2}-4}{x^{2}} \mathrm{~d}x \\\\ &=\displaystyle \int\left(1-\dfrac{4}{x^{2}}\right) \mathrm{~d}x \\\\ &=\displaystyle \int 1 \mathrm{~d}x-\displaystyle \int 4 x^{-2} \mathrm{~d}x \\\\ &=x+\dfrac{4}{x}+C \end{aligned}$
    Since the curve passes through the point $(2,7)$, $7=2+\dfrac{4}{2}+C$
    $C=3$
    $\therefore\ y=x+\dfrac{4}{x}+3$

  15. A curve with $\dfrac{dy}{dx}=k x+3$, where $k$ is a constant, passes through the point $P(3,19)$. Given that the gradient of the normal to the curve at the point $P$ is $-\dfrac{1}{15}$, find
    (i) the value of $k$,
    (ii) the equation of the curve,
    (iii) the coordinates of the turning point on the curve.


  16. $\begin{aligned} \dfrac{\mathrm{~d}y}{\mathrm{~d}x}&=k x+3 \\\\ \text {gradient of normal at }&(3,19)=-\dfrac{1}{15} \\\\ \therefore-\left.\dfrac{1}{\dfrac{\mathrm{~d}y}{\mathrm{~d}x}}\right|_{(3,19)}&=-\dfrac{1}{15} \\\\ \left.\therefore \dfrac{1}{k x+3}\right|_{(3,19)}&=\dfrac{1}{15}\\\\ \therefore 3 k+3&=15 \\\\ k&=4 \\\\ \therefore \quad \dfrac{\mathrm{~d}y}{\mathrm{~d}x}&=4 x+3 \end{aligned}$
    $\begin{aligned} y&=\displaystyle\int \mathrm{~d}y \\\\ &=\displaystyle\int \dfrac{\mathrm{~d}y}{\mathrm{~d}x} \cdot \mathrm{~d}x \\\\ &=\displaystyle\int(4 x+3) \mathrm{~d}x \\\\ &=2 x^{2}+3 x+C \end{aligned}$
    Since the curve passe through the point $(3,19)$
    $\begin{array}{l} 19 =2(3)^{2}+3(3)+C 19 =18+9+C \\\\ C =-8 \\\\ \therefore \quad\mathrm{~d}y=2 x^{2}+3 x-8\\\\ \text { At turning point, } \\\\ \dfrac{\mathrm{~d}y}{\mathrm{~d}x}=0 \\\\ 4 x+3=0\\\\ x=-\dfrac{3}{4} \\\\ y=2\left(-\dfrac{3}{4}\right)^{2}+3\left(-\dfrac{3}{4}\right)-8 \\\\ \quad =-\dfrac{73}{8} \\\\ \text { The turning point is } \left(-\dfrac{3}{4},-\dfrac{73}{8}\right) \end{array}$

  17. The equation of a curve is such that $\dfrac{dy}{dx}=\dfrac{1}{(x-3)^{2}}+x .$ It is given that the curve passes through the point $(2,7)$. Find the equation of the curve.


  18. $\begin{aligned} \dfrac{dy}{dx} &=\dfrac{1}{(x-3)^{2}}+x \\\\ y &=\displaystyle\int \mathrm{~d}y \\\\ &=\displaystyle\int \dfrac{dy}{dx} \\\\ &=\displaystyle\int\left(\dfrac{1}{(x-3)^{2}}+x\right) \mathrm{~d}x \\\\ &=\displaystyle\int \dfrac{1}{(x-3)^{2}} \mathrm{~d}x+\displaystyle\int x \mathrm{~d}x\\\\ \end{aligned}$
    $\begin{aligned} \text{Since}\ \dfrac{d}{\mathrm{~d}x}(x-3)&=1, \\\\ d(x-3)&=\mathrm{~d}x \end{aligned}$

    $\begin{aligned} y&=\displaystyle\int \dfrac{1}{(x-3)^{2}} d(x-3)+\displaystyle\int x \mathrm{~d}x \\\\ &=\displaystyle\int(x-3)^{-2} d(x-3)+\displaystyle\int x \mathrm{~d}x \\\\ &=-\dfrac{1}{x-3}+\dfrac{1}{2} x^{2}+c \end{aligned}$
    Since $(2,7)$ lies on the curve,
    $\begin{array}{l} 7=-\dfrac{1}{2-3}+\dfrac{1}{2}(2)^{2}+C\\\\ C=4\\\\ \therefore\ y=\dfrac{1}{2} x^{2}-\dfrac{1}{x-3}+4 \end{array}$

السبت، 9 مارس 2019

Integration by Substitution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{f(g(x)){g}'(x)}}\ dx\\\\\,\ \ \ \text{Let}\ u=g(x).\\\\\therefore \ \ \displaystyle \frac{{du}}{{dx}}={g}'(x)\\\\\therefore \ \ du={g}'(x)dx\end{array}$

$\displaystyle \begin{array}{l}\begin{array}{|r|l|l|l|c|c|c|c|c|c|} \hline { \displaystyle \therefore \int{{f(g(x)){g}'(x)}}\ dx=\int{{f(u)}}\ du} \\ \hline \end{array}\end{array}$

1.       Evaluate

$\displaystyle \text{(a)}\ \ \ \ \int{{(2{{x}^{3}}-3x+1)(2x-1)}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{(2{{x}^{3}}-3x+1)(2x-1)}}\ dx\\\\\,\ \ \ \text{Let}\ u=2{{x}^{3}}-3x+1.\\\\\therefore \ \ du=(6x-3)dx\\\\\therefore \ \ du=3(2x-1)dx\\\\\therefore \ \ (2x-1)dx=\displaystyle \frac{1}{3}du\\\\\therefore \ \ \displaystyle \int{{(2{{x}^{3}}-3x+1)(2x-1)}}\ dx\\\\\ =\ \displaystyle \int{{u\cdot }}\displaystyle \frac{1}{3}du\\\\\ =\ \displaystyle \frac{1}{3}\displaystyle \int{{u\ }}du\\\\\ =\ \displaystyle \frac{1}{6}{{u}^{2}}+C\\\\\ =\ \displaystyle \frac{1}{6}{{\left( {2{{x}^{3}}-3x+1} \right)}^{2}}+C\end{array}$

$ \displaystyle \text{(b)}\ \ \ \ \int{{\frac{{{{{\left( {2-\sqrt{x}} \right)}}^{5}}}}{{\sqrt{x}}}}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{{\left( {2-\sqrt{x}} \right)}}^{5}}}}{{\sqrt{x}}}}}\ dx\\\\\,\ \ \ \text{Let}\ u=2-\sqrt{x}.\\\\\therefore \ \ du=-\displaystyle \frac{1}{{2\sqrt{x}}}dx\\\\\therefore \ \ \displaystyle \frac{1}{{\sqrt{x}}}dx=-2du\\\\\therefore \ \ \displaystyle \int{{\displaystyle \frac{{{{{\left( {2-\sqrt{x}} \right)}}^{5}}}}{{\sqrt{x}}}}}\ dx\\\\\ =\ -2\displaystyle \int{{{{u}^{5}}\ }}du\\\\\ =\ -2\left( {\displaystyle \frac{1}{6}{{u}^{6}}} \right)+C\\\\\ =\ -\displaystyle \frac{1}{3}{{u}^{6}}+C\\\\\ =\ -\displaystyle \frac{1}{3}{{\left( {2-\sqrt{x}} \right)}^{6}}+C\end{array}$

$\displaystyle (\text{c})\ \ \ \ \int{{\frac{{{{x}^{2}}}}{{5{{x}^{3}}-2}}}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{x}^{2}}}}{{5{{x}^{3}}-2}}}}\ dx\\\\\,\ \ \ \text{Let}\ u=5{{x}^{3}}-2.\\\\\therefore \ \ du=15{{x}^{2}}\ dx\\\\\therefore \ \ {{x}^{2}}\ dx=\displaystyle \frac{1}{{15}}du\\\\\therefore \ \ \displaystyle \int{{\displaystyle \frac{{{{x}^{2}}}}{{5{{x}^{3}}-2}}}}\ dx\\\\\ =\ \displaystyle \frac{1}{{15}}\displaystyle \int{{\displaystyle \frac{1}{u}\ }}du\\\\\ =\ \displaystyle \frac{1}{{15}}\ln |u|+C\\\\\ =\ \displaystyle \frac{1}{{15}}\ln |5{{x}^{3}}-2|+C\end{array}$

$ \displaystyle (\text{d)}\ \ \ \ \int{{\frac{{{{e}^{{3x}}}}}{{1+{{e}^{x}}}}}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{e}^{{3x}}}}}{{1+{{e}^{x}}}}}}\ dx\\\\=\ \ \displaystyle \int{{\displaystyle \frac{{{{e}^{{2x}}}\cdot {{e}^{x}}}}{{1+{{e}^{x}}}}}}\ dx\\\\=\ \ \displaystyle \int{{\displaystyle \frac{{{{{\left( {{{e}^{x}}} \right)}}^{2}}\cdot {{e}^{x}}}}{{1+{{e}^{x}}}}}}\ dx\\\\\,\ \ \ \text{Let}\ u=1+{{e}^{x}},\ \text{then}\ {{e}^{x}}=u-1\\\\\therefore \ \ du={{e}^{x}}\ dx\\\\\therefore \ \ \displaystyle \int{{\displaystyle \frac{{{{e}^{{3x}}}}}{{1+{{e}^{x}}}}}}\ dx\\\\\ =\ \displaystyle \int{{\displaystyle \frac{{{{{\left( {u-1} \right)}}^{2}}}}{u}}}\ du\\\\\ =\ \displaystyle \int{{\displaystyle \frac{{{{u}^{2}}-2u+1}}{u}}}\ du\\\\\ =\ \displaystyle \int{{\left( {u-2+\displaystyle \frac{1}{u}} \right)}}\ du\\\\=\ \displaystyle \int{u}\ du-2\displaystyle \int{{du}}\ +\displaystyle \int{{\displaystyle \frac{1}{u}}}\ du\\\\\ =\ \displaystyle \frac{1}{2}{{u}^{2}}-2u+\ln |u|+C\\\\\ =\ \displaystyle \frac{1}{2}{{\left( {1+{{e}^{x}}} \right)}^{2}}-2\left( {1+{{e}^{x}}} \right)+\ln |1+{{e}^{x}}|+C\\\\\ =\ \displaystyle \frac{1}{2}\left( {1+2{{e}^{x}}+{{e}^{{2x}}}} \right)-2\left( {1+{{e}^{x}}} \right)+\ln |1+{{e}^{x}}|+C\\\\\ =\ \displaystyle \frac{1}{2}+{{e}^{x}}+\displaystyle \frac{1}{2}{{e}^{{2x}}}-2-2{{e}^{x}}+\ln |1+{{e}^{x}}|+C\\\\\ =\ \displaystyle \frac{1}{2}{{e}^{{2x}}}-{{e}^{x}}+\ln |1+{{e}^{x}}|-\displaystyle \frac{3}{2}+C\\\\\ =\ \displaystyle \frac{1}{2}{{e}^{{2x}}}-{{e}^{x}}+\ln |1+{{e}^{x}}|+\ k\ \ \ \left( {k=C-\displaystyle \frac{3}{2}} \right)\end{array}$

$ \displaystyle (\text{e})\ \ \ \ \int{{\frac{{{{{(\ln x)}}^{8}}+1}}{x}}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{{(\ln x)}}^{8}}+1}}{x}}}\ dx\\\\\,\ \ \ \text{Let}\ u=\ln x,\ \\\\\therefore \ \ du=\displaystyle \frac{1}{x}\ dx\\\\\therefore \ \ \displaystyle \int{{\displaystyle \frac{{{{{(\ln x)}}^{8}}+1}}{x}}}\ dx\\\\\therefore \ \ \displaystyle \int{{\left[ {{{{(\ln x)}}^{8}}+1} \right]\displaystyle \frac{1}{x}}}\ dx\\\\\ =\ \displaystyle \int{{\left( {{{u}^{8}}+1} \right)}}\ du\\\\=\ \displaystyle \int{{{{u}^{8}}}}\ du+2\displaystyle \int{{du}}\ \\\\\ =\ \displaystyle \frac{1}{9}{{u}^{9}}+2u+C\\\\\ =\ \displaystyle \frac{1}{9}{{\left( {\ln x} \right)}^{9}}+2\left( {\ln x} \right)+C\end{array}$

$ \displaystyle \text{(f)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{x}^{2}}-8x+3}}{{x+2}}}}\ dx$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{x}^{2}}-8x+3}}{{x+2}}}}\ dx\\\\\ \ \ =\ \ \displaystyle \int{{\displaystyle \frac{{{{{\left( {x+2} \right)}}^{2}}-12(x+2)+23}}{{x+2}}}}\ dx\\\\\ \ \ \ \ \ \ \text{Let}\ u=x+2\\\\\therefore \ \ \ \ \ du=dx\\\\\therefore \ \ \ \ \ \ \displaystyle \int{{\displaystyle \frac{{{{x}^{2}}-8x+3}}{{x+2}}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \int{{\displaystyle \frac{{{{u}^{2}}-12u+23}}{u}}}\ du\\\\\ \ \ \ =\ \ \displaystyle \int{{\left( {u-12+\displaystyle \frac{{23}}{u}} \right)}}\ du\\\\\ \ \ \ =\ \ \displaystyle \int{{\left( {u-12+\displaystyle \frac{{23}}{u}} \right)}}\ du\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{2}{{u}^{2}}-12u+23\ln |u|+C\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{2}{{\left( {x+2} \right)}^{2}}-12\left( {x+2} \right)+23\ln |x+2|+C\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{2}{{x}^{2}}-10x+23\ln |x+2|-22+C\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{2}{{x}^{2}}-10x+23\ln |x+2|+k\ \left[ {k=C-22} \right]\end{array}$

😍 ဆရာမေလး သင္တာနဲ႔တြဲၾကည့္ ပိုမွတ္မိတာေပါ့ 😍



الثلاثاء، 5 مارس 2019

Integration of $ \displaystyle \frac{1}{x}$, $ \displaystyle \frac{1}{ax+b}$ and exponential function


$\displaystyle \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline {\displaystyle \frac{d}{{dx}}\left( {\ln x} \right)=\frac{1}{x}} & {\displaystyle \int{{\frac{1}{x}}}\ dx=\ln \left| x \right|+C} \\ \hline {\displaystyle \frac{d}{{dx}}\left[ {\ln \left( {ax+b} \right)} \right]=\frac{a}{{ax+b}}} & {\displaystyle \int{{\frac{1}{{ax+b}}}}\ dx=\frac{1}{a}\ln \left| {ax+b} \right|+C} \\ \hline { \displaystyle \frac{d}{{dx}}\left( {{{e}^{x}}} \right)={{e}^{x}}} & {\displaystyle \int{{{{e}^{x}}}}\ dx={{e}^{x}}+C}\\ \hline {\displaystyle \frac{d}{{dx}}\left( {{{e}^{{ax+b}}}} \right)=a{{e}^{{ax+b}}}} & {\displaystyle \int{{{{e}^{{ax+b}}}}}\ dx=\frac{1}{a}{{e}^{{ax+b}}}+C} \\ \hline \end{array}\end{array}$

1.  Integrate each of the following with respect to $ \displaystyle x$

$ \displaystyle \begin{array}{l}\text{(a)}\ \ \displaystyle \frac{1}{{3x}}\\\\\text{(b)}\ \ \displaystyle \frac{2}{{5x}}\\\\\text{(c)}\ \ \displaystyle \frac{3}{{4x-1}}\\\\\text{(d)}\ \ \displaystyle \frac{{10}}{{25x+3}}\\\\\text{(e)}\ \ \displaystyle \frac{7}{{2-5x}}\end{array}$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\text{(a)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{1}{{3x}}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{3}\displaystyle \int{{\displaystyle \frac{1}{x}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{1}{3}\ln |x|+C\\\\\\\\\text{(b)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{2}{{5x}}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{2}{5}\displaystyle \int{{\displaystyle \frac{1}{x}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{2}{5}\ln |x|+C\\\\\\\\\text{(c)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{3}{{4x-1}}}}\ dx\\\\\ \ \ \ =\ \ 3\displaystyle \int{{\displaystyle \frac{1}{{4x-1}}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{3}{4}\ln |4x-1|+C\\\\\\\\\text{(d)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{{10}}{{25x+3}}}}\ dx\\\\\ \ \ \ =\ \ 10\displaystyle \int{{\displaystyle \frac{1}{{25x+3}}}}\ dx\\\\\ \ \ \ =\ \ \displaystyle \frac{{10}}{{25}}\ln |25x+3|+C\\\\\ \ \ \ =\ \ \displaystyle \frac{2}{5}\ln |25x+3|+C\\\\\\\\\text{(e)}\ \ \ \ \displaystyle \int{{\displaystyle \frac{7}{{2-5x}}}}\ dx\\\\\ \ \ \ =\ \ 7\displaystyle \int{{\displaystyle \frac{1}{{2-5x}}}}\ dx\\\\\ \ \ \ =\ \ -\displaystyle \frac{7}{5}\ln |2-5x|+C\end{array}$

2.  Find each of the following indefinite integrals.

$ \displaystyle \begin{array}{l}\text{(a)}\ \ \displaystyle \int{{{{e}^{{3x}}}}}\ dx\\\\\text{(b)}\ \ \displaystyle \int{{{{e}^{{2-5x}}}}}\ dx\\\\\text{(c)}\ \ \displaystyle \int{{{{e}^{{3x+\pi }}}}}\ dx\\\\\text{(d)}\ \ \displaystyle \int{{{{{\left( {{{e}^{{2x}}}+1} \right)}}^{2}}}}\ dx\end{array}$

Show/Hide Solution

$ \displaystyle \begin{array}{l}\text{(a)}\ \ \ \displaystyle \int{{{{e}^{{3x}}}}}\ dx\\\\\ \ \ \ =\displaystyle \frac{1}{3}{{e}^{{3x}}}+C\\\\\\\\\text{(b)}\ \ \ \displaystyle \int{{{{e}^{{2-5x}}}}}\ dx\\\\\ \ \ \ =-\displaystyle \frac{1}{5}{{e}^{{2-5x}}}+C\\\\\\\\\text{(c)}\ \ \ \displaystyle \int{{{{e}^{{3x+\pi }}}}}\ dx\\\\\ \ \ \ =\displaystyle \frac{1}{3}{{e}^{{3x+\pi }}}+C\\\\\\\\\text{(d)}\ \ \ \displaystyle \int{{{{{\left( {{{e}^{{2x}}}+1} \right)}}^{2}}}}\ dx\\\\\ \ \ \ =\ \displaystyle \int{{\left( {{{e}^{{4x}}}+2{{e}^{{2x}}}+1} \right)}}\ dx\\\\\ \ \ \ =\ \displaystyle \int{{{{e}^{{4x}}}}}\ dx+2\displaystyle \int{{{{e}^{{2x}}}}}\ dx+\displaystyle \int{1}\ dx\\\\\ \ \ \ =\ \displaystyle \frac{1}{4}{{e}^{{4x}}}+{{e}^{{2x}}}+x+C\end{array}$

السبت، 2 مارس 2019

Indefinite Integral (Anti-Derivative)

 

$ \displaystyle y=x^3$ ကိုပေးထားတဲ့ အခါ $ \displaystyle \frac{dy}{dx}=3x^2$ လို့ရခဲ့တာ သိပြီး ဖြစ်မှာပါ။ 

Differentiation is the process of obtaining the derivative $ \displaystyle \frac{dy}{dx}$ from $ \displaystyle y$.

ပေးထားသော function ($ \displaystyle y$) ကနေ $ \displaystyle \frac{dy}{dx}$ ရအောင်လုပ်တဲ့ လုပ်ငန်းစဉ်ကို differentiation လုပ်တယ်လို့ ခေါ်ပါတယ်။ 

The reverse process of obtaining $ \displaystyle y$ from $ \displaystyle \frac{dy}{dx}$ is called integration. Therefore integration is the reverse of differentiation.

အပြန်အလှန်အားဖြင့် $ \displaystyle \frac{dy}{dx}$ ကနေ မူလ function function ($ \displaystyle y$) ပြန်ရအောင် လုပ်တဲ့ လုပ်ငန်းစဉ်ကိုတော့ anti-derivative (integration) လို့ ခေါ်ပါတယ်။ 

အောက်ပါ ဥပမာများကို ဆက်ကြည့်ရအောင် ...


$ \displaystyle y={{x}^{3}}\Rightarrow \frac{{dy}}{{dx}}=3{{x}^{2}}$

$ \displaystyle y={{x}^{3}}+2\Rightarrow \frac{{dy}}{{dx}}=3{{x}^{2}}$

$ \displaystyle y={{x}^{3}}-\frac{1}{2}\Rightarrow \frac{{dy}}{{dx}}=3{{x}^{2}}$

$\displaystyle y={{x}^{3}}+c\Rightarrow \frac{{dy}}{{dx}}=3{{x}^{2}},c =\text{constant}$

ဒါကြောင့် ...

$ \displaystyle \frac{{dy}}{{dx}}=3{{x}^{2}}\Rightarrow y=\int{{3{{x}^{2}}dx=}}{{x}^{3}}+c$

ဒီနေရာမှာ $ \displaystyle c$ ကို arbitrary constant  လို့ ခေါ်ပါတယ်။ $ \displaystyle \int{{3{{x}^{2}}dx}}$ ကိုတော့ indefinite integral of $ \displaystyle 3x^2$ with respect to  $ \displaystyle x$ လို့ ခေါ်ပါတယ်။ indefinite လို့သုံးရတာကတော့ $ \displaystyle \int{{3{{x}^{2}}dx}}$ အတွက် အဖြေများစွာ (infinitely many solutions) ရှိနေလို့ပါပဲ။


Definition : If $ \displaystyle {F}'(x)=f\left( x \right)$ is continuous at a given interval, then $ \displaystyle \int{{f(x)}}dx=F(x)+c$

Basic Integration Rules 

Integration ဥပဒေသများကို နားလည်ရန် Differentiation ဥပဒေသများနှင့် တွဲမှတ်သင့်ပါသည်။ အဘယ်ကြောင့် ဆိုသော် integration ဆိုသည်မှာ reverse process of differentiation ဖြစ်သောကြောင့်ပင်။ အောက်ပါတို့သည် integration ဆိုင်ရာ အခြေခံဥပဒေသများ ဖြစ်ပါသည်။ 


Differentiation Formula Integration Formula
$ \displaystyle \frac{d}{{dx}}\left[ C \right]=0,C=\text{constant}$ $ \displaystyle \int{{0\ dx=C}},C=\text{constant}$
$ \displaystyle \frac{d}{{dx}}\left[ {kx} \right]=k$ $ \displaystyle \int{{k\ dx=kx+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {kf\left( x \right)} \right]=k\ {f}'\left( x \right)$ $\displaystyle \int{{kf\left( x \right)\ dx}}=\ \ k\int{{f\left( x \right)\ dx}}$
$ \displaystyle \frac{d}{{dx}}\left[ {f\left( x \right)\pm g\left( x \right)} \right]=\frac{d}{{dx}}f\left( x \right)\pm \frac{d}{{dx}}g\left( x \right)$ $ \displaystyle \int{{\left[ {f\left( x \right)\pm g\left( x \right)} \right]\ dx}}= \int{{f\left( x \right)\ dx}}\pm \int{{g\left( x \right)\ dx}}$
$ \displaystyle \frac{d}{{dx}}\left[ {{{x}^{n}}} \right]=n{{x}^{{n-1}}}$ $ \displaystyle \int{{{{x}^{n}}\ dx=\frac{{{{x}^{{n+1}}}}}{{n+1}}+C}},n\ne -1 $
$ \displaystyle \frac{d}{{dx}}{{\left( {ax+b} \right)}^{n}}=na\left( {ax+b} \right)$ $ \displaystyle \int{{{{{\left( {ax+b} \right)}}^{n}}}}\ dx=\frac{{{{{\left( {ax+b} \right)}}^{{n+1}}}}}{{a\left( {n+1} \right)}}+C,n\ne -1,\ a\ne 0$
$ \displaystyle \frac{d}{{dx}}\left[ {\sin x} \right]=\cos x $ $ \displaystyle \int{{\cos x\ \ dx=\sin x+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {\cos x} \right]=-\sin x$ $ \displaystyle \int{{\sin x\ \ dx=-\cos x+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {\tan x} \right]={{\sec }^{2}}x$ $ \displaystyle \int{{{{{\sec }}^{2}}x\ \ dx=\tan x+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {\cot x} \right]=-{{\operatorname{cosec}}^{2}}x$ $ \displaystyle \int{{{{{\operatorname{cosec}}}^{2}}x\ \ dx=-\cot x+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {\sec x} \right]=\sec x\tan x$ $ \displaystyle \int{{\sec x\tan x\ \ dx=\sec x+C}}$
$ \displaystyle \frac{d}{{dx}}\left[ {\operatorname{cosec}x} \right]=-\operatorname{cosec}x\cot x$ $ \displaystyle \int{{\operatorname{cosec}x\cot x\ \ dx=-\operatorname{cosec}x+C}}$

1.Integration of Power Functions

$\displaystyle \begin{array}{l}\begin{array}{|r||l|l|l|c|c|c|c|c|c|} \hline {\displaystyle \int{{{{x}^{n}}\ dx=\frac{{{{x}^{{n+1}}}}}{{n+1}}+C}},n\ne -1 } \\ \hline \end{array}\end{array}$

         Example (1) Find the integral of each of the following.

(a) $\displaystyle x^2 $

(b) $ \displaystyle \frac{{dy}}{{dx}}=2$

(c) $ \displaystyle 4x^3$

        Solution
(a) $ \displaystyle \int{{{{x}^{2}}dx}}=\displaystyle \frac{{{{x}^{{2+1}}}}}{{2+1}}+C$

$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{1}{3}{{x}^{3}}+C$


(b) $ \displaystyle \ \ \ \ \displaystyle \frac{{dy}}{{dx}}=2$

$ \displaystyle \begin{array}{l}\therefore \ \ dy=2dx\\\\\therefore \ \ \displaystyle \int{{1dy}}=\displaystyle \int{{2dx}}\\\\\therefore \ \ y=2\times \displaystyle \frac{{{{x}^{{0+1}}}}}{1}+C\\\\\therefore \ \ y=2x+C\end{array}$


(c) $ \displaystyle \int{{4{{x}^{3}}dx}}=4\int{{{{x}^{3}}dx}}$

$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =4\times \displaystyle \frac{{{{x}^{{3+1}}}}}{{3+1}}+C\\\ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =4\left( {\displaystyle \frac{1}{4}} \right){{x}^{4}}+C\\\ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{4}}+C\end{array}$


         Example (2) Find the integral of each of the following.

(a) $\displaystyle \frac{1}{x^4} $

(b) $ \displaystyle \sqrt[3]{x}$

(c) $ \displaystyle \frac{2}{\sqrt{x}}$

        Solution

(a) $ \displaystyle \int{{\frac{1}{{{{x}^{4}}}}\ }}dx=\displaystyle \int{{{{x}^{{-4}}}\ }}dx$

$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{x}^{{-4+1}}}}}{{-4+1}}+C\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =-\displaystyle \frac{1}{{3{{x}^{3}}}}+C\end{array}$


(b) $ \displaystyle \int{{\sqrt[3]{x}\ }}dx=\int{{{{x}^{{\frac{1}{3}}}}\ }}dx$

$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{x}^{{ \frac{1}{3}+1}}}}}{{\displaystyle \frac{1}{3}+1}}+C\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{3}{4}{{x}^{{\frac{4}{3}}}}+C\end{array}$


(c) $ \displaystyle \int{{\frac{2}{{\sqrt{x}}}\ }}dx=\int{{2{{x}^{{-\frac{1}{2}}}}\ }}dx$

$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2\times \displaystyle \frac{{{{x}^{{-\frac{1}{2}+1}}}}}{{-\displaystyle \frac{1}{2}+1}}+C\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =4\sqrt{x}+C\end{array}$