๐ แီေแแာแွာ แแ္ေแးแိုแ္แဲ့ ေแးแြแ္းแဲ့ section (A) แกေျแျแแ
္แါแแ္။ แီေแးแြแ္းแ แူးแแฝြแ္ ေแ်ာแ္းแားแ်ား แกแြแ္ แแ္แြแ္แါแแ္။ ေแกာแ္แွแ္ แกแြแ္แာ แုแ္ေแแแဲ့ ေแ်ာแ္းแား แ်ားแกแြแ္ แกแแ္แေျแႏိုแ္แါแူး။ แါ့ေแพแာแ့္ แာแแ္แกแแ့္ ေแ်ာแ္းแားแ်ားแို ေแ့แ်แ့္ေแးแแ္ แแแ့္ေแ်ာ္ေแพแာแ္း แกแแံျแဳ แกแ္แါแแ္။ แแ္แွแ္းแားแแ့္ แกแိုแ္း ေแါแ္ေျแာแ္ ေแกာแ္ျแแ္ ႏိုแ္แพแแါေแ
။...
Section (A)
1. (a) The function $ \displaystyle g : N \to N$ is defined as $ \displaystyle g : x\mapsto$ smallest prime factor of $ \displaystyle x.$ (i) Find values for $ \displaystyle g(10), g (20)$ and $ \displaystyle g (81).$ (ii) Does $ \displaystyle g$ have an inverse? Give reasons for your answer.
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ g:N\to N\\\\\ \ \ \ g(x)=\text{smallest prime factor of}\ x.\\\\\ \ \ \ 10=2\times 5\\\\\therefore \ \ g(10)=2\\\\\ \ \ \ 20=2\times 2\times 5\\\\\therefore \ \ g(20)=2\\\\\ \ \ \ 81=3\times 3\times 3\times 3\\\\\therefore \ \ g(81)=3\\\\\ \ \ \ \text{Since}\ g(10)=g(20),\\\\\ \ \ \ g\ \text{is not one to one correspondence}\text{.}\\\\\therefore \ \ {{g}^{{-1}}}\ \text{does not}\ \text{exists}\text{.}\end{array}$
(1) (b) If $ \displaystyle 2x-1$ is a factor of $ \displaystyle 2x^3-x^2-8x+k,$ find $ \displaystyle k$ and the other factors.
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \text{Let }f(x)=2{{x}^{3}}-{{x}^{2}}-8x+k\\\\\ \ \ \ \ \ \ 2x-1\ \text{is a factor of }f(x).\\\\\therefore \ \ \ \ \ f\left( {\displaystyle \frac{1}{2}} \right)=0\\\\\therefore \ \ \ \ \ 2{{\left( {\displaystyle \frac{1}{2}} \right)}^{3}}-{{\left( {\displaystyle \frac{1}{2}} \right)}^{2}}-8\left( {\displaystyle \frac{1}{2}} \right)+k=0\\\\\therefore \ \ \ \ \ \displaystyle \frac{1}{4}-\displaystyle \frac{1}{4}-4+k=0\\\\\therefore \ \ \ \ \ k=4\\\\\therefore \ \ \ \ \ f(x)=2{{x}^{3}}-{{x}^{2}}-8x+4\\\\\ \ \ \ \ \ \ \text{Let }f(x)=(2x-1)({{x}^{2}}+ax+b)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2{{x}^{3}}+2a{{x}^{2}}+2bx-{{x}^{2}}-ax-b\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2{{x}^{3}}+(2a-1){{x}^{2}}+(2b-a)x-b\\\\\therefore \ \ \ \ \ 2a-1=-1\ \operatorname{and}\,b=-4\\\\\therefore \ \ \ \ \ a=0\ \operatorname{and}\ b=-4\\\\\therefore \ \ \ \ \ f(x)=(2x-1)({{x}^{2}}-4)=(2x-1)(x-2)(x+2)\\\\\therefore \ \ \ \ \text{The other factors are }x-2\ \text{and }x+2.\end{array}$
2. (a) Find the term independent of $ \displaystyle x$ in the expansion of $ \displaystyle {{\left( {x-\frac{2}{{{{x}^{2}}}}} \right)}^{9}}.$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ {{(r+1)}^{{\text{th}}}}\text{ term in the expansion of }\ {{\left( {x-\displaystyle \frac{2}{{{{x}^{2}}}}} \right)}^{9}}\\\\\ \ \ \ ={}^{9}{{C}_{r}}{{x}^{{9-r}}}{{\left( {-\displaystyle \frac{2}{{{{x}^{2}}}}} \right)}^{r}}\\\\\ \ \ \ ={}^{9}{{C}_{r}}{{(-2)}^{r}}{{x}^{{9-3r}}}\\\\\ \ \ \ \ \ \ \text{For the term independent of }x,\ 9-3r=0\\\\\therefore \ \ \ \ \ r=3\\\\\therefore \ \ \ \ \ \text{The term independent of }x={}^{9}{{C}_{3}}{{(-2)}^{3}}=\displaystyle \frac{{9\times 8\times 7}}{{1\times 2\times 3}}(-8)=-672\end{array}$
(2) (b) If the sum of n terms of a certain sequence is $ \displaystyle 2n + 3n^2,$ find the $ \displaystyle {n}^{\text{th}}$ term.
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ {{S}_{n}}=2n+3{{n}^{2}}\\\\\ \ \ \ \ \ {{u}_{n}}={{S}_{n}}-{{S}_{{n-1}}}\\\\\therefore \ \ \ \ {{u}_{n}}=2n+3{{n}^{2}}-\left[ {2(n-1)+3{{{(n-1)}}^{2}}} \right]\\\\\therefore \ \ \ \ {{u}_{n}}=2n+3{{n}^{2}}-2n+2+3{{n}^{2}}+6n-3\\\\\therefore \ \ \ \ {{u}_{n}}=4n-1\end{array}$
3. (a) If $ \displaystyle X=\left( {\begin{array}{*{20}{c}} 1 & 0 \\ 2 & 3 \end{array}} \right)$ and $ \displaystyle X-kI$ is singular, where $ \displaystyle I$ is a unit matrix of order $ \displaystyle 2,$ find $ \displaystyle k.$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ X=\displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 2 & 3 \end{array}} \right)\\\\\ \ \ \ \ X-kI=\displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 2 & 3 \end{array}} \right)-k\displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)=\displaystyle \left( {\begin{array}{*{20}{c}} {1-k} & 0 \\ 2 & {3-k} \end{array}} \right)\\\\\ \ \ \ \ X-kI\ \text{is singular}.\\\\\therefore \ \ \ \det (X-kI)=0\\\\\therefore \ \ \ (1-k)(3-k)=0\\\\\therefore \ \ \ k=1\ (\text{or})\ k=3\end{array}$
(3) (b) A number $ \displaystyle x$ is chosen at random from the numbers $ \displaystyle -4, -3, -2, -1, 0, 1, 2, 3, 4.$ What is the probability that $ \displaystyle |x| \le 2?$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \text{Set of possible outcomes}=\left\{ {-4,-3,-2,-1,0,1,2,3,4} \right\}\\\\\therefore \ \ \ \ \text{Number of possible outcomes}=9\\\\\ \ \ \ \ \ |x|\le 2\Leftrightarrow -2\le x\le 2\\\\\therefore \ \ \ \ \text{Set of favourable outcomes}=\left\{ {-2,-1,0,1,2} \right\}\\\\\therefore \ \ \ \ \text{Number of favourable outcomes}=5\\\\\therefore \ \ \ \ P\left( {|x|\le 2} \right)=\displaystyle \frac{5}{9}\end{array}$
4. (a) $ \displaystyle TA$ is the tangent to the circle at$ \displaystyle A, AB = BC, ∠BAC = 41°$ and $ \displaystyle ∠ACT = 46°.$ Find $ \displaystyle ∠ATC.$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \angle BAC=41{}^\circ ,\angle ACT=46{}^\circ (\text{given})\\\\\ \ \ \ \text{Since}\ AB=BC,\angle BCA=\angle BAC\\\\\therefore \ \ \angle BCA=41{}^\circ \\\\\therefore \ \ \angle ABC=180{}^\circ -(41{}^\circ +41{}^\circ )=98{}^\circ \\\\\ \ \ \ \text{Since}\ \angle CAT=\angle ABC,\angle CAT=98{}^\circ \\\\\ \ \ \ \text{In}\ \vartriangle CAT,\\\\\ \ \ \ \angle ATC=180{}^\circ -(\angle CAT+\angle ACT)\\\\\therefore \ \ \angle ATC=180{}^\circ -(98{}^\circ +46{}^\circ )=36{}^\circ \end{array}$
4. (b) If $ \displaystyle 3\overrightarrow{{OA}}-2\overrightarrow{{OB}}-\overrightarrow{{OC}}=\vec{0},$ show that the points $ \displaystyle A, B$ and $ \displaystyle C$ are collinear.
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ 3\overrightarrow{{OA}}-2\overrightarrow{{OB}}-\overrightarrow{{OC}}=\vec{0}\\\\\therefore \ \ \ 2\overrightarrow{{OA}}-2\overrightarrow{{OB}}+\overrightarrow{{OA}}-\overrightarrow{{OC}}=\vec{0}\\\\\therefore \ \ \ 2\left( {\overrightarrow{{OA}}-\overrightarrow{{OB}}} \right)+\left( {\overrightarrow{{OA}}-\overrightarrow{{OC}}} \right)=\vec{0}\\\\\therefore \ \ \ 2\overrightarrow{{BA}}+\overrightarrow{{CA}}=\vec{0}\\\\\therefore \ \ \ 2\overrightarrow{{BA}}=-\overrightarrow{{CA}}\\\\\therefore \ \ \ 2\overrightarrow{{BA}}=\overrightarrow{{AC}}\\\\\therefore \ \ \ A,B\ \operatorname{and}\ C\ \text{are collinear}\text{.}\end{array}$
5. (a) If $\displaystyle \tan \alpha =x+1$ and $ \displaystyle \tan \beta =x-1$, find $ \displaystyle \cot (\alpha -\beta )$ in terms of $ \displaystyle x.$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \tan \ \alpha =x+1,\ \tan \beta =x-1\\\\\therefore \ \ \ \ \tan (\alpha -\beta )=\displaystyle \frac{{\tan \ \alpha -\tan \beta }}{{1+\tan \ \alpha \tan \beta }}\\\\\therefore \ \ \ \ \tan (\alpha -\beta )=\displaystyle \frac{{x+1-x+1}}{{1+(x+1)(x-1)}}\\\\\therefore \ \ \ \ \tan (\alpha -\beta )=\displaystyle \frac{2}{{1+({{x}^{2}}-1)}}=\displaystyle \frac{2}{{{{x}^{2}}}}\\\\\therefore \ \ \ \ \cot (\alpha -\beta )=\displaystyle \frac{1}{{\tan (\alpha -\beta )}}=\displaystyle \frac{{{{x}^{2}}}}{2}\end{array}$
5. (b) Evaluate $ \displaystyle \underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{(2x-3)(\sqrt{x}-1)}}{{2{{x}^{2}}+x-3}}$ and $ \displaystyle \underset{{x\to 0}}{\mathop{{\lim }}}\,\frac{{3{{{\sin }}^{2}}x-2\sin {{x}^{2}}}}{{3{{x}^{2}}}}.$
(3 marks)
Show/Hide Solution
$ \displaystyle \begin{array}{l}\ \ \ \ \ \ \ \underset{{x\to 1}}{\mathop{{\lim }}}\,\displaystyle \frac{{(2x-3)(\sqrt{x}-1)}}{{2{{x}^{2}}+x-3}}\\\\\ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\displaystyle \frac{{(2x-3)(\sqrt{x}-1)}}{{(2x+3)(x-1)}}\\\\\ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\displaystyle \frac{{(2x-3)(\sqrt{x}-1)}}{{(2x+3)(\sqrt{x}-1)(\sqrt{x}+1)}}\\\\\ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\displaystyle \frac{{(2x-3)}}{{(2x+3)(\sqrt{x}+1)}}\\\\\ \ \ \ =\displaystyle \frac{{2-3}}{{(2+3)(1+1)}}\\\\\ \ \ \ =-\displaystyle \frac{1}{{10}}\\\\\\\ \ \ \ \ \ \ \underset{{x\to 0}}{\mathop{{\lim }}}\,\displaystyle \frac{{3{{{\sin }}^{2}}x-2\sin {{x}^{2}}}}{{3{{x}^{2}}}}\\\\\ \ \ \ =\underset{{x\to 0}}{\mathop{{\lim }}}\,\left[ {\displaystyle \frac{{{{{\sin }}^{2}}x}}{{{{x}^{2}}}}-\displaystyle \frac{2}{3}\cdot \displaystyle \frac{{\sin {{x}^{2}}}}{{{{x}^{2}}}}} \right]\\\\\ \ \ \ =\underset{{x\to 0}}{\mathop{{\lim }}}\,\left[ {{{{\left( {\displaystyle \frac{{\sin x}}{x}} \right)}}^{2}}-\displaystyle \frac{2}{3}\cdot \displaystyle \frac{{\sin {{x}^{2}}}}{{{{x}^{2}}}}} \right]\\\\\ \ \ \ =1-\displaystyle \frac{2}{3}\\\\\ \ \ \ =\displaystyle \frac{1}{3}\end{array}$
0 Reviews:
Post a Comment