1. Given that (p - x)6 = r - 96x + sx2 + ... , find p, r, s.
Solution
(p - x)6 = r - 96x + sx2 + ...
Using binomial expansion,
6C0 p6 + 6C1 p5 (- x) + 6C2 p4 (- x)2 + ... = r - 96x + sx2 + ...
Using binomial expansion,
6C0 p6 + 6C1 p5 (- x) + 6C2 p4 (- x)2 + ... = r - 96x + sx2 + ...
p6 + 6 p5 (- x) + 15 p4 (- x)2 + ... = r - 96x + sx2 + ...
p6 - 3 p5 x + p4 x2 + ... = r - 96x + sx2 + ...
∴ 3p5 = 96
p = 2
r = p6 = 64
s = p4 = (2)4 =(16) = 60.
2. The first three terms in the expansion of (a + b)n in
ascending powers of b are denoted by p, q and r
respectively. Show that . Given that
p = 4, q = 32 and r = 96, evaluate n.
Solution
(a + b)n = p + q + r + ...
nC0 an + nC1 an-1 b + nC2 an-2 b2 + ... = p + q + r + ...
an + n an-1 + an-2 b2 + ... = p + q + r + ...
∴ p = an
q = n an-1
r =
∴
When p = 4, q = 32 and r = 96,
nC0 an + nC1 an-1 b + nC2 an-2 b2 + ... = p + q + r + ...
an + n an-1 + an-2 b2 + ... = p + q + r + ...
∴ p = an
q = n an-1
r =
∴
When p = 4, q = 32 and r = 96,
8n - 8 = 6n
2n = 8
n = 4
3. Using binomial theorem, find the coefficient of x2
in the expansion of (3 + x - 2x2)5.
Solution
[3 + (x - 2x2)]5
= 35 + 5 (34) (x - 2x2) + 10 (33) (x - 2x2)2 + ...
= 35 + 405(x - 2x2) + 270 (x2 - 4x3 + 4x4) + ...
∴ The coefficient of x2 in the expansion of (3 + x - 2x2)5
= 405 (-2) + 270
= - 540
4. Find the coefficient of x4 in the expansion of
(x2 - 5x + 12).
5. In the expansion of (1 + x)(a - bx)12, the coefficient of
= 35 + 5 (34) (x - 2x2) + 10 (33) (x - 2x2)2 + ...
= 35 + 405(x - 2x2) + 270 (x2 - 4x3 + 4x4) + ...
∴ The coefficient of x2 in the expansion of (3 + x - 2x2)5
= 405 (-2) + 270
= - 540
4. Find the coefficient of x4 in the expansion of
(x2 - 5x + 12).
Solution
(x2 - 5x + 12)
= (x2 - 5x + 12) ()
= (x2 - 5x + 12) (x6 - 12x4 + 60x2 + . . . )
∴ The coefficient of x4 = 1(60) + 12 (-12) = - 84
x8 is zero. Find the value of the ratio a : b.
Solution
(1 + x)(a - bx)12
= (1 + x)(- bx + a)12
= (1 + x) (12C0 (-bx)12 + 12C1 (-bx)11a +12C2 (-bx)10a2 + 12C3 (-bx)10a3
+ 12C4 (-bx)9a4 + 12C5 (-bx)8a5+ 12C6 (-bx)7a6 + ...)
∴ The coefficient of x8 = 12C5 b8a5 - 12C6 b7a6
By the problem,
12C5 b8a5 - 12C6 b7a6 = 0
∴ 12C5 b8a5 = 12C6 b7a6
∴ 12C5 b = 12C6 a
∴
Problems Supported by : Sayar Tun Tun Aung
+ 12C4 (-bx)9a4 + 12C5 (-bx)8a5+ 12C6 (-bx)7a6 + ...)
∴ The coefficient of x8 = 12C5 b8a5 - 12C6 b7a6
By the problem,
12C5 b8a5 - 12C6 b7a6 = 0
∴ 12C5 b8a5 = 12C6 b7a6
∴ 12C5 b = 12C6 a
∴
Problems Supported by : Sayar Tun Tun Aung
0 Reviews:
Post a Comment