1. Given that (p - x)6 = r - 96x + sx2 + ... , find p, r, s. Solution
(p - x)6 = r - 96x + sx2 + ...
Using binomial expansion,
6C0 p6 + 6C1 p5 (- x) + 6C2 p4 (- x)2 + ... = r - 96x + sx2 + ...
p6 + 6 p5 (- x) + 15 p4 (- x)2 + ... = r - 96x + sx2 + ...
p6 - 3 p5 x + p4 x2 + ... = r - 96x + sx2 + ...
∴ 3p5 = 96
p = 2
r = p6 = 64
s = p4 = (2)4 =(16) = 60.
2. The first three terms in the expansion of (a + b)n in ascending powers of b are denoted by p, q and r respectively. Show that . Given that p = 4, q = 32 and r = 96, evaluate n. Solution
(a + b)n = p + q + r + ...
nC0 an + nC1 an-1 b + nC2 an-2 b2 + ... = p + q + r + ...
an + n an-1 + an-2 b2 + ... = p + q + r + ...
∴ p = an
q = n an-1
r =
∴
When p = 4, q = 32 and r = 96,