$ \displaystyle \ \ \ \sin \theta =y$
$ \displaystyle \ \ \ \cos \theta =x$
$ \displaystyle \ \ \ \tan \theta =\frac{y}{x}$
$ \displaystyle \ \ \ \cot \theta =\frac{x}{y}$
$ \displaystyle \ \ \ \sec \theta =\frac{1}{x}$
$ \displaystyle \ \ \ \operatorname{cosec}\theta =\frac{1}{y}$
$ \displaystyle \ \ \ \text{Since}\ \vartriangle {P}'O{N}'\cong \vartriangle PON,$
$ \displaystyle \ \ \ {y}'=y\ \text{and }{x}'=x\ \text{numerically}\text{.}$
$ \displaystyle \ \ \ \text{But }{P}'({x}',{y}')\ \text{lies in the third quadrant}\text{.}$
$ \displaystyle \therefore {y}'=-y\ \text{and }{x}'=-x.$
$ \displaystyle \therefore \sin (180{}^\circ +\theta )={y}'=-y=-\sin \theta $
$ \displaystyle \ \ \ \cos (180{}^\circ +\theta )={x}'=-x=-\cos \theta $
$ \displaystyle \ \ \ \tan (180{}^\circ +\theta )=\frac{{{y}'}}{{{x}'}}=\frac{{-y}}{{-x}}=\tan \theta $
$ \displaystyle \ \ \ \cot (180{}^\circ +\theta )=\frac{{{y}'}}{{{x}'}}=\frac{{-x}}{{-y}}=\cot \theta $
$ \displaystyle \ \ \ \sec (180{}^\circ +\theta )=\frac{1}{{{x}'}}=-\frac{1}{x}=-\sec \theta $
$ \displaystyle \ \ \ \operatorname{cosec}(180{}^\circ +\theta )=\frac{1}{{{y}'}}=-\frac{1}{y}=-\operatorname{cosec}\theta $
Dynamic Presentation
0 Reviews:
إرسال تعليق