$\displaystyle \displaystyle\ \begin{array}{{|l|}}\hline \displaystyle 1{}^\circ =\frac{\pi }{{180}}\ \text{radians} \\ \hline \end{array}$
$\displaystyle \displaystyle \ \begin{array}{{|l|}}\hline \displaystyle \theta{}^\circ =\theta\times \frac{\pi }{{180}}\ \text{radians} \\ \hline \end{array}$
$ \displaystyle \text{(a)}\ 30{}^\circ =30\times \frac{\pi }{{180}}=\frac{\pi }{6}\ \text{rad}$
$ \displaystyle \text{(b)}\ 45{}^\circ =45\times \frac{\pi }{{180}}=\frac{\pi }{4}\ \text{rad}$
$ \displaystyle \text{(c)}\ 60{}^\circ =60\times \frac{\pi }{{180}}=\frac{\pi }{3}\ \text{rad}$
$ \displaystyle \text{(d)}\ 90{}^\circ =90\times \frac{\pi }{{180}}=\frac{\pi }{2}\ \text{rad}$
$ \displaystyle \text{(e)}\ 120{}^\circ =120\times \frac{\pi }{{180}}=\frac{{2\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(f)}\ 135{}^\circ =135\times \frac{\pi }{{180}}=\frac{{3\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(g)}\ 150{}^\circ =150\times \frac{\pi }{{180}}=\frac{{5\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(h)}\ 180{}^\circ =180\times \frac{\pi }{{180}}=\pi \ \text{rad}$
$ \displaystyle \text{(i)}\ 210{}^\circ =210\times \frac{\pi }{{180}}=\frac{{7\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(j)}\ 225{}^\circ =225\times \frac{\pi }{{180}}=\frac{{5\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(k)}\ 240{}^\circ =240\times \frac{\pi }{{180}}=\frac{{4\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(l)}\ 270{}^\circ =270\times \frac{\pi }{{180}}=\frac{{3\pi }}{2}\ \text{rad}$
$ \displaystyle \text{(m)}\ 300{}^\circ =300\times \frac{\pi }{{180}}=\frac{{5\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(n)}\ 315{}^\circ =315\times \frac{\pi }{{180}}=\frac{{7\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(o)}\ 330{}^\circ =330\times \frac{\pi }{{180}}=\frac{{11\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(p)}\ 360{}^\circ =360\times \frac{\pi }{{180}}=2\pi \ \text{rad}$
$ \displaystyle \text{(b)}\ 45{}^\circ =45\times \frac{\pi }{{180}}=\frac{\pi }{4}\ \text{rad}$
$ \displaystyle \text{(c)}\ 60{}^\circ =60\times \frac{\pi }{{180}}=\frac{\pi }{3}\ \text{rad}$
$ \displaystyle \text{(d)}\ 90{}^\circ =90\times \frac{\pi }{{180}}=\frac{\pi }{2}\ \text{rad}$
$ \displaystyle \text{(e)}\ 120{}^\circ =120\times \frac{\pi }{{180}}=\frac{{2\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(f)}\ 135{}^\circ =135\times \frac{\pi }{{180}}=\frac{{3\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(g)}\ 150{}^\circ =150\times \frac{\pi }{{180}}=\frac{{5\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(h)}\ 180{}^\circ =180\times \frac{\pi }{{180}}=\pi \ \text{rad}$
$ \displaystyle \text{(i)}\ 210{}^\circ =210\times \frac{\pi }{{180}}=\frac{{7\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(j)}\ 225{}^\circ =225\times \frac{\pi }{{180}}=\frac{{5\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(k)}\ 240{}^\circ =240\times \frac{\pi }{{180}}=\frac{{4\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(l)}\ 270{}^\circ =270\times \frac{\pi }{{180}}=\frac{{3\pi }}{2}\ \text{rad}$
$ \displaystyle \text{(m)}\ 300{}^\circ =300\times \frac{\pi }{{180}}=\frac{{5\pi }}{3}\ \text{rad}$
$ \displaystyle \text{(n)}\ 315{}^\circ =315\times \frac{\pi }{{180}}=\frac{{7\pi }}{4}\ \text{rad}$
$ \displaystyle \text{(o)}\ 330{}^\circ =330\times \frac{\pi }{{180}}=\frac{{11\pi }}{6}\ \text{rad}$
$ \displaystyle \text{(p)}\ 360{}^\circ =360\times \frac{\pi }{{180}}=2\pi \ \text{rad}$
0 Reviews:
Post a Comment