‏إظهار الرسائل ذات التسميات analytic geometry. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات analytic geometry. إظهار كافة الرسائل

الاثنين، 12 يوليو 2021

Polar Coordinate System - Part (1)

Definition


In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

  • သတ်မှတ်ထားသော အမှတ်တစ်ခုမှ အကွာအဝေးအတိုင်းအတာနှင့်

  • သတ်မှတ်ထားသော ဦးတည်ရာ တစ်ခုမှ ထောင့်ပမာဏ အတိုင်းအတာ

စသည့်အတိုင်းအတာ နှစ်ခုဖြင့် အမှတ်တစ်ခု၏ တည်နေရာကို ဖော်ပြသော စနစ်အား polar coordinate system ဟုခေါ်သည်။


ဤနေရာတွင် Rectangular coordinate system (Cartesian Coordinate System) တွင် သိရှိခဲ့ပြီးဖြစ်သည့် အမှတ်တစ်ခု၏ တည်နေရာသတ်မှတ်ပုံကို ပြန်လည်ဆွေးနွေးပါမည်။ Cartesian Coordinate System တွင် အမှတ်တစ်ခု၏ တည်နေရာကို ordered pair $(x,y)$ ဖြင့်ဖေါ်ပြကြောင်း သိရှိခဲ့ပြီးဖြစ်သည်။ $x$ ဆိုသည်မှာ origin မှ $x$ ဝင်ရိုးတလျှောက် အကွားအဝေးဖြစ်ပြီး $x$-coordinate ဟု သတ်မှတ်သည်။ $y$ ဆိုသည်မှာ origin မှ $y$ ဝင်ရိုးတလျှောက် အကွားအဝေးဖြစ်ပြီး $y$-coordinate ဟု သတ်မှတ်သည်။



Fig 1: A point in cartesian coordinate system

Polar coordinate system တွင် အဆိုပါအမှတ် P ၏ တည်နေရာကို origin (pole) မှ မျဉ်းဖြောင့်အကွားအဝေး ($r$ ဟုသတ်မှတ်သည်)နှင့် positive $x$-axis မှ နာရီလက်တံပြောင်းပြန် အတိုင်း(anticlockwise direction)တိုင်းတာသော ထောင့်ပမာဏ ($\theta$) ဖြင့် ဖော်ပြသည်။ ထို့ကြောင့် Polar coordinate system တွင် အမှတ်တစ်ခု၏ တည်နေရာကို $P(r, \theta)$ ဟု သတ်မှတ်သည်။ Polar coordinate system တွင် origin (pole) reference point ဟုခေါ်ပြီး $\theta$ ကို reference angle ဟုခေါ်သည်။ reference angle ကို radian ဖြင့်သာ ဖော်ပြရမည်။



Fig 2: A point in polar coordinate system

Polar coordinate system တွင် $r$ သည် postive number သာ ဖြစ်ရမည်ဟု ထင်မှတ်နိုင်သည်။ သို့သော် အနုတ်တန်ဖိုး $r$ အတွက်လည်း နေရာ သတ်မှတ်နိုင်သည်။ အောက်ပါ ဥပမာ ပုံများကို လေ့လာကြည့်ပါ။



Fig 3: Points in polar coordinate system for $r>0$ and $r<0$

ထောင့်ပမာဏ ပြောင်းလဲခြင်းမရှိပဲ $r$ ၏ လက္ခဏာသာ ပြောင်းလဲလျှင် အမှတ်၏တည်နေရာသည် pole မှ မူလအမှတ်၏ အကွာအဝေးအတိုင်း ဆန့်ကျင်ဘက် ဦးတည်ရာတွင် ရှိသည်ဟု မှတ်ယူရမည်။

ထောင့်တန်ဖိုးသည်လည်း အနုတ်ဂဏန်းဖြစ်နိုင်သည်။ ထောင့်တန်းဖိုး အနုတ်ဂဏန်း ဖြစ်ပါက သတ်မှတ်ပမာဏအတိုင်း နာရီလက်တံအတိုင်း လှည့်ခြင်း (clockwise direction) ဖြစ်သည်။ တူညီသော အကွာအဝေး $(r)$ တစ်ခုအတွက် အနုတ်ထောင့်နှင့် အပေါင်းထောင့်ကို ကိုယ်စားပြုသော အမှတ်တို့၏ တည်နေရာကို အောက်ပါအတိုင်း သိရှိရမည်။



Fig 4: Location of $(r,\theta)$ and $(r,-\theta)$

ထို့ကြောင့် $r$ နှင့် $\theta$ တို့၏ လက္ခဏာကိုမူတည်၍ အမှတ်များ၏ တည်နေရာကို အောက်ပါအတိုင်း မှတ်ယူနိုင်ပါသည်။



Fig 5: Location of points in polar coordinate system in accordance with the signs of $r$ and $\theta$

Coterminal Angles


Coterminal angles are angles which when drawn at standard position (so their initial sides are on the positive x-axis) share the same terminal side.

initial side တူ၍ terminal side တစ်ခုတည်းကို မျှဝေသုံးဆွဲနေကြသော ထောင့်များကို coterminal angle ဟုခေါ်သည်။



Fig 6: Coterminal Angles

ဖော်ပြပါပုံတွင် ထောင့်တန်ဖိုးများ မတူညီသော်လည်း terminal side တစ်ခုတည်းသာ ဖြစ်နေသောကြောင့် $\displaystyle\frac{\pi}{4}$၊ $-\displaystyle\frac{7\pi}{4}$ နှင့် $\displaystyle\frac{9\pi}{4}$ တို့သည် coterminal angle များဖြစ်ကြသည်။


coterminal angle များသည် တည်နေရာ တစ်ခုတည်းကို ရည်ညွှန်းသည့်အတွက် polar coordinate system တွင် အမှတ်တစ်ခု၏ တည်နေရာကို ပုံစံအမျိုးမျိုးဖြင့် ဖော်ပြနိုင်သည်။

ထို့ကြောင့် $(3,\displaystyle\frac{\pi}{4})$, $(3,-\displaystyle\frac{7\pi}{4})$, $(3,\displaystyle\frac{9\pi}{4})$ တို့သည် အမှတ်တစ်ခုတည်းကိုသာ ကိုယ်စားပြုသည်။ အောက်ဖာ်ပြပါပုံကို ဆက်လက်လေ့လာကြည့်ပါ။



Fig 7: Uniqueness of polar coordinates

မူလအမှတ် $(r, \theta)$ ကို တစ်ပတ်ပြည့် $(360^{\circ} =2\pi\ \text{radians})$ အောင် လှည့်လိုက်လျှင် မူလနေရာပင် ပြန်ရောက်နေပေမည်။ ထို့ကြောင့် $(r, \theta)= (r, \theta + 2\pi)$ ဟု ဆိုနိုင်သည်။ အလားတူပင် နှစ်ပတ်၊ သုံးပတ် စသဖြင့် လှည့်လိုက်လျှင်လည်း မူလနေရာပင် ပြန်ရောက်မည် ဖြစ်သည်။ ထို့သို့လှည့်ရာတွင် anticlockwise, clockwise မည်သည့် direction ဖြင့် လှည့်သည်ဖြစ်စေ ရောက်ရှိမည့် နေရာမှာ အတူတူပင် ဖြစ်သည်။

$\therefore (r, \theta)=(r, \theta\pm 2\pi)=(r, \theta\pm 4\pi)=...=(r, \theta\pm 2n\pi)$ where n is any integer.

ထို့ပြင် $(-r, \theta)$ ကို $\pi$ radian လှည့်လိုက်လျှင် $(r, \theta)$ နေရာသို့ ရောက်ရှိမည်။ တစ်ပတ်ခွဲ $3\pi$ radian လှည့်လိုက်လျှင်လည်း $(r, \theta)$ နေရာသို့ ရောက်ရှိမည်ဖြင့်သည်။ အလားတူ နှစ်ပတ်ခွဲ၊ သုံးပတ်ခွဲ စသဖြင့် လှည့်လိုက်လျှင်လည်း ထိုနေရာသို့ပင် ရောက်ရှိမည်။ အထက်တွင် ဖော်ပြခဲ့သည့်နည်းတူ anticlockwise, clockwise မည်သည့် direction ဖြင့် လှည့်သည်ဖြစ်စေ ရောက်ရှိမည့် နေရာမှာ အတူတူပင် ဖြစ်သည်။

$\therefore (r, \theta)=(-r, \theta\pm \pi)=(r, \theta\pm 3\pi)=...=(r, \theta\pm (2n+1)\pi)$ where n is any integer.


Relation between Cartesian and Polar Coordinates


Rectangular coordinate နှင့် polar coordinate တို့၏ အပြန်အလှန် ဆက်သွယ်ချက်များကို ဆက်လက် လေ့လာကြည့်ပါမည်။



Fig 8: Rectangular and polar coordinates

Polar to Rectangular

Polar coordinate $(r, \theta)$ ပေးထားလျှင် rectangular coordinate $(x,y)$ သို့ အောက်ပါအတိုင်း ပြောင်းလဲနိုင်သည်။

$\begin{array}{l}\text{Since}\ \displaystyle\frac{y}{r}=\sin \theta ,\ y=r\sin \theta \\\\ \text{Similarly}\ \displaystyle\frac{x}{r}=\cos \theta ,\ x=r\cos \theta \end{array}$
Rectangular to Polar

Ractangular coordinate $(x,y)$ ပေးထားလျှင် polar coordinate $(r, \theta)$ သို့ အောက်ပါအတိုင်း ပြောင်းလဲနိုင်သည်။

$\begin{array}{l}{{x}^{2}}+{{y}^{2}}={{r}^{2}}\\r=\sqrt{{{{x}^{2}}+{{y}^{2}}}}\\\tan \theta =\displaystyle\frac{y}{x}\\\\ \theta ={{\tan }^{{-1}}}\displaystyle\frac{y}{x}\end{array}$


Example (1)

Plot the point $P$ with polar coordinates $\left(3, \displaystyle\frac{\pi}{6}\right)$, and find other polar coordinates $(r, \theta)$ of this same point for which:

(a) $r>0, \quad 2 \pi \leq \theta <4 \pi$

(b) $r<0, \quad 0 \leq \theta <2\pi$

(c) $r>0, \quad-2 \pi \leq \theta<0$


Solution

Given Point: $\left(3, \displaystyle\frac{\pi}{6}\right)$

Plot of the point $\left(3, \displaystyle\frac{\pi}{6}\right)$
(a) $r>0, \quad 2 \pi \leq \theta<4 \pi$

$\therefore \left(3, \displaystyle\frac{\pi}{6}\right)= \left(3, \displaystyle\frac{\pi}{6}+2\pi\right) =\left(3, \displaystyle\frac{13\pi}{6}\right)$


Plot of the point $\left(3, \displaystyle\frac{13\pi}{6}\right)$
(b) $r<0, \quad 0 \leq \theta <2 \pi$

$\therefore \left(3, \displaystyle\frac{\pi}{6}\right)= \left(-3, \displaystyle\frac{\pi}{6}+\pi\right) =\left(-3, \displaystyle\frac{7\pi}{6}\right)$


Plot of the point $\left(-3, \displaystyle\frac{7\pi}{6}\right)$
(c) $r>0, \quad-2 \pi \leq \theta<0$

$\therefore \left(3, \displaystyle\frac{\pi}{6}\right)= \left(3, \displaystyle\frac{\pi}{6}-2\pi\right) =\left(3, -\displaystyle\frac{11\pi}{6}\right)$


Plot of the point $\left(3, -\displaystyle\frac{11\pi}{6}\right)$
Example (2)

If $(r,\theta)=\left(4,\displaystyle\frac{7 \pi}{6}\right)$ are polar coordinates of a point $P$, find the rectangular coordinates of $P$.

Solution

$\begin{array}{l} \text{Given Point:}\ (r,\theta )=\left( {4,\displaystyle\frac{{7\pi }}{6}} \right)\\\\ \therefore r=4,\theta =\displaystyle\frac{{7\pi }}{6}\\\\\ \ x=r\cos \theta \\\\ \ \ \ \ \ =4\cos \displaystyle\frac{{7\pi }}{6}\ \\\\ \ \ \ \ \ =4\left( {-\displaystyle\frac{{\sqrt{3}}}{2}} \right)\\\\ \ \ \ \ =-2\sqrt{3}\\\\ \ \ y=r\sin \theta \\\\ \ \ \ \ \ =4\sin \displaystyle\frac{{7\pi }}{6}\\\\ \ \ \ \ \ =4\left( {-\displaystyle\frac{1}{2}} \right)\\\\ \ \ \ \ =-2 \end{array}$

The coordinates of the point $P$ in rectangular coordinate system is $\left( {-2\sqrt{3},-2} \right)$.

Example (3)

Change the rectangular coordinates to polar coordinates with $r>0$ and $0 \leq \theta \leq 2 \pi$

(a) $(2,2)$

(b) $(-3,3\sqrt{3})$


Solution

$ \begin{array}{l}\left( \text{a} \right)\ \ (2,2)\\\\\ \ \ \ \ \ r=\sqrt{{{{x}^{2}}+{{y}^{2}}}}\\\\\ \ \ \ \ \ r=\sqrt{{{{2}^{2}}+{{2}^{2}}}}\\\\\ \ \ \ \ \ r=2\sqrt{2}\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}\displaystyle\frac{y}{x}\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}\displaystyle\frac{2}{2}\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}(1)\\\\\ \ \ \ \ \ \theta =\displaystyle\frac{\pi }{4}\\\\\therefore \ \ \ (2,2)=(2\sqrt{2},\displaystyle\frac{\pi }{4})\\\\\left( \text{b} \right)\ \ (-3,3\sqrt{3})\\\\\ \ \ \ \ \ r=\sqrt{{{{x}^{2}}+{{y}^{2}}}}\\\\\ \ \ \ \ \ r=\sqrt{{{{{(-3)}}^{2}}+{{{(3\sqrt{3})}}^{2}}}}\\\\\ \ \ \ \ \ r=\sqrt{{36}}\\\\\ \ \ \ \ \ r=6\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}\displaystyle\frac{y}{x}\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}\displaystyle\frac{{3\sqrt{3}}}{{-3}}\\\\\ \ \ \ \ \ \theta ={{\tan }^{{-1}}}(-\sqrt{3})\\\\\ \ \ \ \ \ \theta =\displaystyle\frac{{5\pi }}{3}\ \\\\\therefore \ \ \ (-3,3\sqrt{3})=(6,\displaystyle\frac{{5\pi }}{3})\ \ \ \ \ \ \ \ \end{array}$

Exercise

  1. Which polar coordinates represent the same point as $(3, \pi / 3) ?$

    (a) $\left(3,\displaystyle\frac{7 \pi}{3}\right)$

    (b) $\left(3,-\displaystyle\frac{\pi}{3}\right)$

    (c) $\left(-3,\displaystyle\frac{4 \pi}{3}\right)$

    (d) $\left(3,-\displaystyle\frac{2 \pi}{3}\right)$

    (e) $\left(-3,-\displaystyle\frac{2 \pi}{3}\right)$

    (f) $\left(-3,-\displaystyle\frac{\pi}{3}\right)$

  2. Which polar coordinates represent the same point as $(4,-\pi / 2) ?$

    (a) $\left(4,\displaystyle\frac{5 \pi}{2}\right)$

    (b) $\left(4,\displaystyle\frac{7 \pi}{2}\right)$

    (c) $\left(-4,-\displaystyle\frac{ \pi}{2}\right)$

    (d) $\left(4,-\displaystyle\frac{5 \pi}{2}\right)$

    (e) $\left(-4,-\displaystyle\frac{3 \pi}{2}\right)$

    (f) $\left(-4, \displaystyle\frac{\pi}{2}\right)$

  3. Change the polar coordinates to rectangular coordinates.

    (a) $\left(3, \displaystyle\frac{\pi}{4}\right)$

    (b) $\left(-1,\displaystyle\frac{2\pi}{3}\right)$

    (c) $\left(5,\displaystyle\frac{5\pi}{6}\right)$

    (d) $\left(-6,\displaystyle\frac{7\pi}{3}\right)$

    (e) $\left(8,-\displaystyle\frac{2\pi}{3}\right)$

    (f) $\left(-3,\displaystyle\frac{5\pi}{3}\right)$

    (g) $\left(4,-\displaystyle\frac{\pi}{4}\right)$

    (h) $\left(-2,\displaystyle\frac{7\pi}{6}\right)$

  4. Change the rectangular coordinates to polar coordinates with $r>0$ and $0 \leq \theta \leq 2 \pi$

    (a) $(-1,1)$

    (b) $(-2 \sqrt{3},-2)$

    (c) $(3 \sqrt{3}, 3)$

    (d) $(2,-2)$

    (e) $(7,-7 \sqrt{3})$

    (f) $(5,5)$

    (g) $(-2 \sqrt{2},-2 \sqrt{2})$

    (h) $(-4,4 \sqrt{3})$

الثلاثاء، 15 يونيو 2021

Conic Sectons (Ellipse) - Part (7)

Introduction


Ellipse ဆိုသည်မှာ ပြင်ညီတစ်ခုပေါ်ရှိ ဘဲဥပုံသဏ္ဌာန် ပတ်လမ်းကြောင်းဟု အလွယ်ပြောနိုင်သည်။ Solar System (နေအဖွဲ့အစည်း) အတွင်းရှိ ဂြိုဟ်ပတ်လမ်းကြောင်းများသည် ellipse ပုံ သဏ္ဌာန်နှင့် အနီးစပ်ဆုံး တူညီသည်။ လက်တွေ့နယ်ပယ်တွင် Ellipse ကိုအလှဆင်ခြင်းနှင့် ဒီဇိုင်းပြုလုပ်ရန်အတွက် ဗိသုကာတွင် ကျယ်ပြန့်စွာအသုံးပြုသည်။ Whispering Chambers ဟုခေါ်သော အချို့သော အဆောက်အအုံများကို elliptical domes (ဘဲဥပုံအမိုးခုံး) ဖြင့်တည်ဆောက်လေ့ရှိသည်။ အောက်ပါပုံကို ကြည့်ပါ။ Ellipse ၏ ဂုဏ်သတ္တိကြောင့် $F_1$ ၌ ရပ်နေသော လူ၏ ပြောစကားများ သာမန်ဖြင့် မကြားနိုင်သည့် အကွာအဝေးတွင်ရှိသော $F_2$ မှလူက အလွယ်တကူ ကြားနိုင်သည်။



Definition


An ellipse is the set of all points, P, in a plane the sum of whose distances from two fixed points, $F_1$ and $F_2$, is constant.These two fixed points are called the foci (plural of focus). The midpoint of the segment connecting the foci is the center of the ellipse.


  • အမှတ်သေ (မရွေ့လျားသောအမှတ်) နှစ်ခု $F_1$ မှ $F_2$ အကွာအဝေးနှစ်ခု ပေါင်းခြင်းသည် ကိန်းသေ ($PF_1+ PF_2$ = constant) ဖြစ်နေသော အမှတ်အားလုံးပါဝင်သည့်အစု ($P$ အမှတ်၏ ရွေ့လျားရာ လမ်းကြောင်း) ကို ellipse ဟုခေါ်သည်။

  • $F_1$ နှင့် $F_2$ ကို ellipse ၏ ဆုံချက်များ (foci) ဟုခေါ်သည်။

  • $F_1$ နှင့် $F_2$ ၏ အလယ်မှတ်ကို ellipse ၏ center ဟုခေါ်သည်။


Important Terms


  • Foci are the distinct fixed points in the plane such that the sum of the distances from each point on an ellipse is constant.

    Foci (ဆုံချက်များ) ဆိုသည်မှာ မရွေ့လျားနိုင်သော အမှတ်သေနှစ်ခု ဖြစ်ပြီး၊ ellipse ပေါ်ရှိအမှတ်တစ်ခုမှ ထိုအမှတ်နှစ်ခုကို ဆက်သွယ်ထားသော မျဉ်းပြတ်များ၏ အလျားများပေါင်းခြင်းသည် ကိန်းသေဖြစ်သည်။

  • Vertices are the points of intersection of an ellipse and the line through its foci.

    Focus နှစ်ခုဖြတ်သွားသော မျဉ်းနှင့် ellipse တို့ ဖြတ်သောအမှတ်များ ကို Vertices ဟုခေါ်သည်။

  • Major axis is the chord connecting the vertices of an ellipse.

    Vertices နှစ်ခုကိုဆက်သွယ်ထားသော မျဉ်းကို major axis ဟုခေါ်သည်။

  • Centre is the midpoint of the segment connecting the foci of an ellipse.

    foci နှစ်ခုကိုဆက်ထားသော မျဉ်းပြတ်၏ အလယ်မှတ်ကို centre ဟုခေါ်သည်။

  • Minor axis is the chord perpendicular to the major axis at the center of an ellipse.

    major axis ကို centre ၌ ထောင့်မှတ်ကျသော မျဉ်းကို minor axis ဟုခေါ်သည်။

  • Co-Vertices are the points of intersection of an ellipse and its minor axis.

    minor axis နှင့် ellipse တို့ ဖြတ်သောအမှတ်များကို co-vertices ဟုခေါ်သည်။

  • Length of major axis $ = 2a$

  • Length of minor axis $ = 2b$



Ellipse with horizontal major axis




Ellipse with vertical major axis



$PF_1+PF_2=\text{constant}$


Ellipse ပုံတစ်ခုကို အောက်ဖေါ်ပြပါပုံအတိုင်း လက်တွေ့ ရေးဆွဲနိုင်ပါသည်။

ပုံတွင်မြင်တွေ့ရသည့်အတိုင်း $PF_1$ နှင့် $PF_2$ အလျားနှစ်ခုပေါင်းခြင်းသည် တင်း၍ဆွဲထားသော ကြိုး၏ အလျားပင် ဖြစ်သည်။ $P$ ဆိုသည်မှာ ခဲတံထောက်ထားသော နေရာကို ဆိုလိုသည်။ ခဲတံမည်သည့်နေရာတွင် ရှိပါစေ $PF_1+ PF_2$ = length of string ဖြစ်သောကြောင့် constant ဖြစ်ကြောင်း အလွယ်သိနိုင်သည်။

$PF_1+ PF_2 = 2a$ ဖြစ်ကြောင်း သက်သေပြပါမည်။ $P$ သည် မည်သည့်နေရာတွင် ရှိသည်ဖြစ်စေ $PF_1+ PF_2$ သည် ကိန်းသေဖြစ်ကြောင်း သိရှိခဲ့ပြီး ဖြစ်သည်။ ထို့ကြောင့် သက်သေပြချက်လွယ်ကူစေရန် $P$ သည် Ellipse ၏ vertex နေရာ၌ရှိသည့် အခြေအနေဖြင့် သက်သေပြပါမည်။



Vertex နေရာတွင် $P$ ရှိနေသည့်အခါ $PF_1 = a+c$ and $PF_2=a-c$ ဖြစ်မည်။

ထို့ကြောင့် $PF_1+ PF_2 = a+c + a-c =2a$ ဖြစ်ကြောင်း အလွယ်တကူသိနိုင်သည်။

$a, b$ နှင့် $c$ တို့၏ ဆက်သွယ်ချက်ကို ရှာရန် အောက်ပါအခြေအနေဖြင့် စဉ်းစားပါမည်။

သတ်မှတ်ထားသော ellipse တစ်ခုအတွက် $P$ သည် မည်သည့်နေရာတွင် ရှိသည်ဖြစ်စေ $a, b, c$ တို့၏ တန်ဖိုးပြောင်းလဲခြင်း မရှိပါ။

ထို့ကြောင့် ဆက်သွယ်ချက်ကို ရှာရန် လွယ်ကူစေဖို့ $P$ သည် Ellipse ၏ co-vertex နေရာ၌ရှိသည့် အခြေအနေဖြင့် တင်ပြပါမည်။



Co-Vertex နေရာတွင် $P$ ရှိနေသည့်အခါ $PF_1 = PF_2 = a$ ဖြစ်မည်။ Pythagoras' Theorem အရ $a^2 = b^2 + c^2$ ဖြစ်ပါမည်။

Ellipse with Centre at $(0,0)$


Curve တစ်ခု လမ်းကြောင်းပေါ်ရှိ $(x,y)$ အမှတ်များ၏ အစုအဝေးကို ၎င်း curve ၏ equation ဟုခေါ်သည်။ curve လမ်းကြောင်းပေါ်ရှိ မည်သည့် အမှတ် $(x, y)$ မဆို curve equation ကို ပြေလည်စေသည်။ တနည်းဆိုသော် ပေးထားသော equation ကို ပြေလည်စေသော အမှတ်တစ်ခု ရွေ့လျားရာ လမ်းကြောင်း (locus) ကို Curve ဟုခေါ်သည်။

ဆက်လက်၍ centre က $(0,0)$ ရှိသော ellipse တစ်ခု၏ standard equation ကို တင်ပြပါမည်။



Center : $(0,0)$

Verteices : $(-a,0)$ and $(a,0)$

Co-Vertices : $(-b,0)$ and $(b,0)$

Foci : $(-c,0)$ and $(c,0)$

Lenght of major axis = $2a$

Lenght of minor axis = $2b$

$PF_1=\sqrt{(x+c)^2+y^2}$

$PF_2=\sqrt{(x-c)^2+y^2}$

$\begin{array}{l}\ \ \text{For any point }P(x,y)\text{ on the ellipse,}\\\\\ \ P{{F}_{1}}+P{{F}_{2}}=2a\\\\\therefore \ \sqrt{{{{{(x+c)}}^{2}}+{{y}^{2}}}}+\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}=2a\\\\\ \ \sqrt{{{{{(x+c)}}^{2}}+{{y}^{2}}}}=2a-\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ \text{Squaring both sides,}\\\\\ \ \ {{(x+c)}^{2}}+{{y}^{2}}=4{{a}^{2}}-4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}+{{(x-c)}^{2}}+{{y}^{2}}\\\\\ \ \ {{(x-c)}^{2}}-\ {{(x+c)}^{2}}+4{{a}^{2}}=4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ (x-c+x+c)\ (x-c-x-c)+4{{a}^{2}}=4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ (2x)\ (-2c)+4{{a}^{2}}=4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ 4{{a}^{2}}-4cx=4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ 4{{a}^{2}}-4cx=4a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ {{a}^{2}}-cx=a\sqrt{{{{{(x-c)}}^{2}}+{{y}^{2}}}}\\\\\ \ \ \text{Squaring both sides,}\\\\\ \ \ {{a}^{4}}-2{{a}^{2}}cx+{{c}^{2}}{{x}^{2}}={{a}^{2}}{{(x-c)}^{2}}+{{a}^{2}}{{y}^{2}}\\\\\ \ \ {{a}^{4}}-2{{a}^{2}}cx+{{c}^{2}}{{x}^{2}}={{a}^{2}}({{x}^{2}}-2cx+{{c}^{2}})+{{a}^{2}}{{y}^{2}}\\\\\ \ \ {{a}^{4}}-2{{a}^{2}}cx+{{c}^{2}}{{x}^{2}}={{a}^{2}}{{x}^{2}}-2{{a}^{2}}cx+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{y}^{2}}\\\\\ \ \ {{a}^{4}}+{{c}^{2}}{{x}^{2}}={{a}^{2}}{{x}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{y}^{2}}\\\\\ \ \ ({{a}^{2}}-{{c}^{2}}){{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{4}}-{{a}^{2}}{{c}^{2}}\\\\\ \ \ \text{Since}\ {{a}^{2}}={{b}^{2}}+{{c}^{2}},{{c}^{2}}={{a}^{2}}-{{b}^{2}}\\\\\ \ \ ({{a}^{2}}-{{a}^{2}}+{{b}^{2}}){{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{4}}-{{a}^{2}}({{a}^{2}}-{{b}^{2}})\\\\\ \ \ {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{4}}-{{a}^{4}}+{{a}^{2}}{{b}^{2}}\\\\\ \ \ {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\\\\\ \ \ \text{Dividing both sides with }{{a}^{2}}{{b}^{2}}\text{,}\\\\\ \ \ \displaystyle\frac{{{{b}^{2}}{{x}^{2}}}}{{{{a}^{2}}{{b}^{2}}}}+\displaystyle\frac{{{{a}^{2}}{{y}^{2}}}}{{{{a}^{2}}{{b}^{2}}}}=\displaystyle\frac{{{{a}^{2}}{{b}^{2}}}}{{{{a}^{2}}{{b}^{2}}}}\\\\\ \ \ \displaystyle\frac{{{{x}^{2}}}}{{{{a}^{2}}}}+\displaystyle\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1\end{array}$

အထက်ဖော်ပြပါ equation တွင် major axis သည် horizontal ဖြစ်သည်။ အကယ်၍ major axis သည် vertical ဖြစ်လျှင် ellipse ၏ equation မှာ $\displaystyle\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ ဖြစ်သွားပါမည်။

Summarized Table


Centre Major Axis Foci Vertices Equation Diagram
$(0,0)$ along $x$-axis $(-c, 0)$
$(c, 0)$
$(-a, 0)$
$(a, 0)$
$\displaystyle\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$(0,0)$ along $y$-axis $(-c, 0)$
$(c, 0)$
$(-a, 0)$
$(a, 0)$
$\displaystyle\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$