- $f(x)=x^{2}+6 x+8$
Given that $f(x)$ can be expressed in the form $(x+A)^{2}+B$ where $A$ and $B$ are constants,- find the value of $A$ and the value of $B$.
- Hence, or otherwise, find
- the value of $x$ for which $f(x)$ has its least value
- the least value of $f(x)$
The curve $C$ has equation $y=x^{2}+6 x+8$
The line $l$, with equation $y=2-x$, intersects $C$ at two points.
- Find the $x$-coordinate of each of these two points.
- Find the $x$-coordinate of the points where $C$ crosses the $x$-axis.
- $f(x)=3 x^{2}+6 x+7$
Given that $\mathrm{f}(x)$ can be written in the form $A(x+B)^{2}+C$, where $A, B$ and $C$ are rational numbers,- find the value of $A$, the value of $B$ and the value of $C$.
- Hence, or otherwise, find
- the value of $x$ for which $\dfrac{1}{f(x)}$ is a maximum,
- the maximum value of $\dfrac{1}{f(x)}$.
-
$f(x)=2 x^{2}-8 x+5$
Given that $f(x)$ can be written in the form $a(x-b)^{2}+c$- find the value of $a$, the value of $b$ and the value of $c$.
- Write down
- the minimum value of $f(x)$
- the value of $x$ at which this minimum occurs.
-
$f(x)=6+5 x-2 x^{2}$
Given that $f(x)$ can be written in the form $p(x+q)^{2}+r$, where $p, q$ and $r$ are rational numbers,- find the value of $p$, the value of $q$ and the value of $r$.
- Hence, or otherwise, find
- the maximum value of $f(x)$
- the value of $x$ for which this maximum occurs.
$g(x)=6+5 x^{3}-2 x^{6}$ - Write down
- the maximum value of $g(x)$,
- the exact value of $x$ for which this maximum occurs.
-
The roots of the equation $x^{2}+6 x+2=0$ are $\alpha$ and $\beta$,
where $\alpha>\beta$. Without solving the equation,
- find
- the value of $\alpha^{2}+\beta^{2}$,
- the value of $\alpha^{4}+\beta^{4}$.
- Show that $\alpha-\beta=2 \sqrt{7}$.
- Factorise completely $\alpha^{4}-\beta^{4}$.
- Hence find the exact value of $\alpha^{4}-\beta^{4}$.
- Given that $\beta^{4}=A+B \sqrt{7}$ where $A$ and $B$ are positive constants find the value of $A$ and the value of $B$.
- find
-
The equation $x^{2}+m x+15=0$ has roots $\alpha$ and $\beta$ and the equation
$x^{2}+h x+k=0$ has roots $\dfrac{\alpha}{\beta}$ and $\dfrac{\beta}{\alpha}$
- Write down the value of $k$.
- Find an expression for $h$ in terms of $m$.
- find the two possible values of $\alpha$.
- Hence find the two possible values of $m$.
Given that $\beta=2 \alpha+1$,
- The equation $2 x^{2}-7 x+4=0$ has roots $\alpha$ and $\beta$ Without solving this equation, form a quadratic equation with integer coefficients which has roots $\alpha+\dfrac{1}{\beta}$ and $\beta+\dfrac{1}{\alpha}$.
-
$f(x)=2 x^{2}-5 x+1$
The equation $f(x)=0$ has roots $\alpha$ and $\beta$. Without solving the equation- find the value of $\alpha^{2}+\beta^{2}$
- show that $\alpha^{4}+\beta^{4}=\dfrac{433}{16}$
- form a quadratic equation with integer coefficients which has roots $\left(\alpha^{2}+\dfrac{1}{\alpha^{2}}\right)$ and $\left(\beta^{2}+\dfrac{1}{\beta^{2}}\right)$
-
The equation $x^{2}+p x+1=0$ has roots $\alpha$ and $\beta$
- Find, in terms of $p$, an expression for
- $\alpha+\beta$.
- $\alpha^{2}+\beta^{2}$.
- $\alpha^{3}+\beta^{3}$.
- Find a quadratic equation, with coefficients expressed in terms of $p$, which has roots $a^{3}$ and $\beta^{3}$.
- Find, in terms of $p$, an expression for
-
- Show that $(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=\alpha^{3}+\beta^{3}$.
The roots of the equation $2 x^{2}+6 x-7=0$ are $\alpha$ and $\beta$ where $\alpha>\beta$.
Without solving the equation, - find the value of $\alpha^{3}+\beta^{3}$.
- show that $\alpha-\beta=\sqrt{23}$.
- Hence find the exact value of $\alpha^{3}-\beta^{3}$.
- Show that $(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=\alpha^{3}+\beta^{3}$.
-
$f(x)=x^{2}+(k-3) x+4$
The roots of the equation $f(x)=0$ are $\alpha$ and $\beta$.- Find, in terms of $k$, the value of $\alpha^{2}+\beta^{2}$.
- without solving the equation $f(x)=0$, form a quadratic equation, with integer coefficients, which has roots $\dfrac{1}{\alpha^{2}}$ and $\dfrac{1}{\beta^{2}}$
- find the possible values of $k$.
Given that $4\left(\alpha^{2}+\beta^{2}\right)=7 \alpha^{2} \beta^{2}$,
-
$f(x)=x^{2}+p x+7 \quad p \in \mathbb{R}$.
The roots of the equation $\mathrm{f}(x)=0$ are $\alpha$ and $\beta$.- Find, in terms of $p$ where necessary,
- $\alpha^{2}+\beta^{2}$,
- $\alpha^{2} \beta^{2}$.
- find the possible values of $p$.
- form a quadratic equation with roots $\dfrac{2 p}{\alpha^{2}}$ and $\dfrac{2 p}{\beta^{2}}$.
Given that $7\left(\alpha^{2}+\beta^{2}\right)=5 \alpha^{2} \beta^{2}$.
Using the positive value of $p$ found in part (b) and without solving the equation $f(x)=0$,
- Find, in terms of $p$ where necessary,
- The equation $3 x^{2}-5 x+4=0$ has roots $\alpha$ and $\beta$. Without solving this equation, form a quadratic equation with integer coefficients that has roots $\alpha+\dfrac{1}{2 \beta}$ and $\beta+\dfrac{1}{2 \alpha}$.
-
The roots of the equation $x^{2}+3 x-5=0$ are $\alpha$ and $\beta$.
- Without solving the equation, find
- the value of $\alpha^{2}+\beta^{2}$.
- the value of $\alpha^{4}+\beta^{4}$.
- show that $\alpha-\beta=\sqrt{29}$.
- Factorise $\alpha^{4}-\beta^{4}$ completely.
- Hence find the exact value of $\alpha^{4}-\beta^{4}$.
- find the value of $p$ and the value of $q$.
Given that $\alpha>\beta$ and without solving the equation,
Given that $\beta^{4}=p+q \sqrt{29}$ where $p$ and $q$ are positive constants,
- Without solving the equation, find
-
It is given that $\alpha$ and $\beta$ are such that $a+\beta=-\dfrac{5}{2}$ and $\alpha \beta=-5$.
- Form a quadratic equation with integer coefficients that has roots $\alpha$ and $\beta$
- find the value of
- $\alpha^{2}+\beta^{2}$.
- $a^{3}+\beta^{3}$.
- Hence form a quadratic equation with integer coefficients that has roots $\left(\alpha-\dfrac{1}{\alpha^{2}}\right)$ and $\left(\beta-\dfrac{1}{\beta^{2}}\right)$.
Without solving the equation found in part (a),
Monday, September 27, 2021
Friday, September 10, 2021
Factorial Expression : Exercise
September 10, 2021
TargetMathematics
algebra, combination, counting, factorial, grade 12, permutation
No comments
Edit
Factorials
We define $\boldsymbol{n} !=\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})(\boldsymbol{n}-\mathbf{2}) \cdots \mathbf{3} \cdot \mathbf{2} \cdot \mathbf{1}$ if $n$ is a nonnegative integer. An empty product is normally defined to be 1 . With this convention, $0 !=1$ An alternative is to define $\boldsymbol{n} !$ recursively on the nonnegative integers. |
---|
Exercise
- Evaluate
$\begin{array}{lll} \text{(a)}\ 2 !& \text{(b)}\ 3 !& \text{(c)}\ 4 !\\\\ \text{(e)}\ 5 !& \text{(f)}\ 6 !& \text{(g)}\ 10 ! \end{array}$ - Express in factorial form:
$\begin{array}{l} \text{(a)}\ 4 \times 3 \times 2 \times 1 \\\\ \text{(b)}\ 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \quad \\\\ \text{(c)}\ 6 \times 5 \\\\ \text{(d)}\ 8 \times 7 \times 6\\\\ \text{(e)}\ 10 \times 9 \times 8 \times 7 \\\\ \text{(f)}\ 15 \times 14 \times 13 \times 12\\\\ \text{(g)}\ \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1} \\\\ \text{(h)}\ \dfrac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1}\\\\ \text{(i)}\ \dfrac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1} \end{array}$ - Simplify without using a calculator:
$\begin{array}{ll} \text{(a)}\ \dfrac{7 !}{6 !}& \text{(b)}\ \dfrac{8 !}{6 !}\\\\ \text{(c)}\ \dfrac{12 !}{10 !}& \text{(d)}\ \dfrac{120 !}{119 !}\\\\ \text{(e)}\ \dfrac{10 !}{8 ! \times 2 !}& \text{(f)}\ \dfrac{100 !}{98 ! \times 2 !}\\\\ \text{(g)}\ \dfrac{7 !}{3 !}& \text{(h)}\ \dfrac{8 !}{5 !}\\\\ \text{(i)}\ \dfrac{4 !}{2 ! 2 !}& \text{(j)}\ \dfrac{6 !}{3 ! 2 !}\\\\ \text{(k)}\ \dfrac{6 !}{(3 !)^{2}}& \text{(l)}\ \dfrac{5 !}{3 !} \times \dfrac{7 !}{4 !} \end{array}$ - Simplify:
$\begin{array}{l} \text{(a)}\ \dfrac{n !}{(n-1) !}\\\\ \text{(b)}\ \dfrac{(n+2) !}{n !}\\\\ \text{(c)}\ \dfrac{(n+1) !}{(n-1) !} \end{array}$ - Rewrite each of the following using factorial notation.
$\begin{array}{l} \text{(a)}\ n(n-1)(n-2)(n-3)\\\\ \text{(b)}\ n(n-1)(n-2)(n-3)(n-4)(n-5)\\\\ \text{(c)}\ \dfrac{n(n-1)(n-2)}{5 \times 4 \times 3 \times 2 \times 1}\\\\ \text{(d)}\ \dfrac{n(n-1)(n-2)(n-3)(n-4)}{3 \times 2 \times 1} \end{array}$ - Express the following as a single factorial notation.
(a) $n !(n+1)$
(b) $(n-1) !\left(n^{2}+n\right)$
(c) $(n+4)(n+5)(n+3) !$
(d) $n !\left(n^{2}+3 n+2\right)$
(e) $(n+1)(n+2)(n+3)$
(f) $(n-3)(n-4)(n-5)$ - Write as a product by factorizing:
(a) $5 !+4 !$
(b) $11 !-10 !$
(c) $5 !+7 !$
(d) $12 !-10 !$
(e) $9 !+8 !+7 !$
(f) $7 !-6 !+8 !$
(g) $12 !-2 \times 11 !$
(h) $3 \times 9 !+5 \times 8 !$ - Simplify by factorizing:
$\begin{array}{l} \text{(a)}\ \dfrac{12 !-11 !}{11}\\\\ \text{(b)}\ \dfrac{10 !+9 !}{11}\\\\ \text{(c)}\ \dfrac{10 !-8 !}{89}\\\\ \text{(d)}\ \dfrac{10 !-9 !}{9 !}\\\\ \text{(e)}\ \dfrac{6 !+5 !-4 !}{4 !}\\\\ \text{(f)}\ \dfrac{n !+(n-1) !}{(n-1) !}\\\\ \text{(g)}\ \dfrac{n !-(n-1) !}{n-1}\\\\ \text{(h)}\ \dfrac{(n+2) !+(n+1) !}{n+3} \end{array}$
$\begin{aligned} \text{(a)}\ &2 !=2 \times 1=2 \\\\ \text{(b)}\ &3 !=3 \times 2 \times 1=6 \\\\ \text{(c)}\ &4 !=4 \times 3 \times 2 \times 1=24 \\\\ \text{(d)}\ &5 !=5 \times 4 \times 3 \times 2 \times 1=120 \\\\ \text{(e)}\ &6 !=6 \times 5 \times 4 \times 3 \times 2 \times 1=720 \\\\ \text{(f)}\ &10 !=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=362880 \end{aligned}$ |
---|
$\begin{aligned}
\text{(a)}\ &\quad 4 \times 3 \times 2 \times 1\\\\
&=4 !\\\\
\text{(b)}\ &\quad 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1\\\\
&=7 !\\\\
\text{(c)}\ &\quad 6 \times 5\\\\
&=\dfrac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}\\\\
&=\dfrac{6 !}{4 !}\\\\
\text{(d)}\ &\quad 8 \times 7 \times 6\\\\
&=\dfrac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}\\\\
&=\dfrac{8 !}{5 !}\\\\
\text{(e)}\ &\quad 10 \times 9 \times 8 \times 7\\\\
&=\dfrac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}\\\\
&=\dfrac{10 !}{6 !}\\\\
\text{(f)}\ &\quad 15 \times 14 \times 13 \times 12\\\\
&=\dfrac{15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}\\\\
&=\dfrac{15 !}{11 !}\\\\
\text{(g)}\ &\quad \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1}\\\\
&=\dfrac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(6 \times 5 \times 4 \times 3 \times 2 \times 1)}\\\\
&=\dfrac{9 !}{3 ! 6 !}\\\\
\text{(h)}\ &\quad \dfrac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1}\\\\\
&=\dfrac{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1)(9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}\\\\
&=\dfrac{13 !}{4 ! 9 !}\\\\
\text{(i)}\ &\quad \dfrac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1}\\\\
&=\dfrac{15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(5 \times 4 \times 3 \times 2 \times 1)( 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}\\\\
&=\dfrac{15 !}{5 ! 10 !}
\end{aligned}$ $\begin{aligned} &\textbf{Alternative Method }\\\\ \text{(a)}\ &\quad 4 \times 3 \times 2 \times 1\\\\ &=4 !\\\\ \text{(b)}\ &\quad 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1\\\\ &=7 !\\\\ \text{(c)}\ &\quad 6 \times 5=\dfrac{6 \times 5 \times 4 !}{4 !}\\\\ &=\dfrac{6 !}{4 !}\\\\ \text{(d)}\ &\quad 8 \times 7 \times 6\\\\ &=\dfrac{8 \times 7 \times 6 \times 5 !}{5 !}\\\\ &=\dfrac{8 !}{5 !}\\\\ \text{(e)}\ &\quad 10 \times 9 \times 8 \times 7\\\\ &=\dfrac{10 \times 9 \times 8 \times 7 \times 6 !}{6 !}\\\\ &=\dfrac{10 !}{6 !}\\\\ \text{(f)}\ &\quad 15 \times 14 \times 13 \times 12=\dfrac{15 \times 14 \times 13 \times 12 \times 11 !}{11 !}\\\\ &=\dfrac{15 !}{11 !}\\\\ \text{(g)}\ &\quad \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1}\\\\ &=\dfrac{9 \times 8 \times 7 \times 6 !}{3 \times 2 \times 1 \times 6 !}\\\\ &=\dfrac{9 !}{3 ! 6 !}\\\\ \text{(h)}\ &\quad \dfrac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1}\\\\ &=\dfrac{13 \times 12 \times 11 \times 10 \times 9 !}{4 \times 3 \times 2 \times 1 \times 9 !}\\\\ &=\dfrac{13 !}{4 ! 9 !} \\\\ \text{(i)}\ &\quad \dfrac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1}\\\\ &=\dfrac{15 \times 14 \times 13 \times 12 \times 11 \times 10 !}{5 \times 4 \times 3 \times 2 \times 1 \times 10 !}\\\\ &=\dfrac{15 !}{5 ! 10 !} \end{aligned}$ |
---|
$\begin{array}{l} \text{(a)}\ \dfrac{7 !}{6 !}=\dfrac{7 \times 6 !}{6 !}=7\\\\ \text{(b)}\ \dfrac{8 !}{6 !}=\dfrac{8 \times 7 \times 6 !}{6 !}=56\\\\ \text{(c)}\ \dfrac{12 !}{10 !}=\dfrac{12 \times 11 \times 10 !}{10 !}=132\\\\ \text{(d)}\ \dfrac{120 !}{119 !}=\dfrac{120 \times 119 !}{119 !}=120\\\\ \text{(e)}\ \dfrac{10 !}{8 ! \times 2 !}=\dfrac{10 \times 9 \times 8 !}{8 ! \times(2 \times 1)}=45\\\\ \text{(f)}\ \dfrac{100 !}{98 ! \times 2 !}=\dfrac{100 \times 99 \times 98 !}{98 ! \times 2 \times 1}=4950\\\\ \text{(g)}\ \dfrac{7 !}{3 !}=\dfrac{7 \times 6 \times 5 \times 4 \times 3 !}{3 !}=840\\\\ \text{(h)}\ \dfrac{8 !}{5 !}=\dfrac{8 \times 7 \times 6 \times 5 !}{5 !}=336\\\\ \text{(i)}\ \dfrac{4 !}{2 ! 2 !}=\dfrac{4 \times 3 \times 2 !}{2 !(2 \times 1)}=6\\\\ \text{(j)}\ \dfrac{6 !}{3 ! 2 !}=\dfrac{6 \times 5 \times 4 \times 3 !}{3 ! \times(2 \times 1)}=60\\\\ \text{(k)}\ \dfrac{6 !}{(3 !)^{2}}=\dfrac{6 \times 5 \times 4 \times 3 !}{3 !(3 \times 2 \times 1)}=20\\\\ \text{(l)}\ \dfrac{5 !}{3 !} \times \dfrac{7 !}{4 !}=(5 \times 4) \times(7 \times 6 \times 5)=4200 \end{array}$ |
---|
$\begin{aligned} \text{(a)}\ &\dfrac{n !}{(n-1) !}\\\\\ &=\dfrac{n(n-1) !}{(n-1) !}\\\\ &=n \\\\ \text{(b)}\ &\dfrac{(n+2) !}{n !}\\\\ &=\dfrac{(n+2)(n+1) n !}{n !}\\\\ &=n^{2}+3 n+2 \\\\ \text{(c)}\ &\dfrac{(n+1) !}{(n-1) !}\\\\ &=\dfrac{(n+1) n(n-1) !}{(n-1) !}\\\\ &=n^{2}+n \end{aligned}$ |
---|
$\begin{aligned} \text{(a)}\ &n(n-1)(n-2)(n-3)\\\\ &=\frac{n(n-1)(n-2)(n-3)(n-4) !}{(n-4) !}\\\\ &=\frac{n !}{(n-4) !} \\\\ \text{(b)}\ &n(n-1)(n-2)(n-3)(n-4)(n-5)\\\\ &=\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6) !}{(n-6) !}\\\\ &=\frac{n !}{(n-6) !} \\\\ \text{(c)}\ &\frac{n(n-1)(n-2)}{5 \times 4 \times 3 \times 2 \times 1}\\\\ &=\frac{n(n-1)(n-2)(n-3) !}{5 !(n-3) !}=\frac{n !}{5 !(n-3) !} \\\\ \text{(d)}\ &\frac{n(n-1)(n-2)(n-3)(n-4)}{3 \times 2 \times 1}\\\\ &=\frac{n(n-1)(n-2)(n-3)(n-4)(n-5) !}{3 !(n-5) !}\\\\ &=\frac{n !}{3 !(n-5) !} \end{aligned}$ |
---|
$\begin{aligned} \text { (a) } & n !(n+1) \\\\ &=(n+1) n ! \\\\ &=(n+1) ! \\\\ \text { (b) } &(n-1) !\left(n^{2}+n\right) \\\\ &=\left(n^{2}+n\right)(n-1) ! \\\\ &=(n+1) n(n-1) ! \\\\ &=(n+1) ! \\\\ &=(n+5)(n+4)(n+3) ! \\\\ &=(n+5) !\\\\ \text { (c) } &(n+4)(n+5)(n+3) ! \\\\ &=(n+5)(n+4)(n+3) ! \\\\ &=(n+5) !\\\\ \text { (d) } & n !\left(n^{2}+3 n+2\right) \\\\ =&(n+2)(n+1) n ! \\\\ =&(n+2) !\\\\ \text { (e) } &(n+1)(n+2)(n+3) \\\\ =& \frac{(n+3)(n+2)(n+1) n !}{n !} \\\\ =& \frac{(n+3) !}{n !}\\\\ \text { (f) } & (n-3)(n-4)(n-5) \\\\ &=\frac{(n-3)(n-4)(n-5)(n-6) !}{(n-6) !} \\\\ &=\frac{(n-3) !}{(n-6) !} \end{aligned}$ |
---|
$\begin{aligned} \text { (a) } & \quad 5 !+4 ! \\\\ &= 5 \times 4 !+4 ! \\\\ &=(5+1) 4 ! \\\\ &= 6 \times 4 ! \\\\ \text { (b) } & \quad 11 !-10 ! \\\\ &=(11-1) 10 ! \\\\ &= 10 \times 10 !\\\\ \text { (c) } & \quad 5 !+7 ! \\\\ &= 5 !+7 \times 6 \times 5 ! \\\\ &=(1+42) 5 ! \\\\ &= 43 \times 5 ! \\\\ \text { (d) } & \quad 12 !-10 ! \\\\ &= 12 \times 11 \times 10 !-10 ! \\\\ &=(132-1) 10 ! \\\\ &= 131 \times 10 !\\\\ \text { (e) } & \quad 9 !+8 !+7 ! \\\\ &= 9 \times 8 \times 7 !+8 \times 7 !+7 ! \\\\ &=(72+8+1) 7 ! \\\\ &= 81 \times 7 ! \\\\ \text { (f) } & \quad 7 !-6 !+8 ! \\\\ &= 7 \times 6 !-6 !+8 \times 7 \times 6 ! \\\\ &=(7-1+56) 6 ! \\\\ &= 62 \times 6 !\\\\ \text { (g) } & \quad 12 !-2 \times 11 ! \\\\ &= 12 \times 11 !-2 \times 11 ! \\\\ &=(12-2) 11 ! \\\\ &= 10 \times 11 ! \\\\ \text { (h) } & \quad 3 \times 9 !+5 \times 8 ! \\\\ &= 3 \times 9 \times 8 !+5 \times 8 ! \\\\ &=(27+5) 8 ! \\\\ &= 32 \times 8 ! \end{aligned}$ |
---|
$\begin{aligned} \text { (a) } & \quad \dfrac{12 !-11 !}{11} \\\\ &= \dfrac{12 \times 11 !-11 !}{11} \\\\ &= \dfrac{(12-1) 11 !}{11} \\\\ &= \dfrac{11 \times 11 !}{11} \\\\ &= 11 !\\\\ \text { (b) } & \quad \dfrac{10 !+9 !}{11} \\\\ &= \dfrac{10 \times 9 !+9 !}{11} \\\\ &= \dfrac{(10+1) 9 !}{11} \\\\ &= \dfrac{11 \times 9 !}{11} \\\\ &= 9 !\\\\ \text { (c) } & \quad \dfrac{10 !-8 !}{89} \\\\ &= \dfrac{10 \times 9 \times 8 !-8 !}{89} \\\\ &= \dfrac{(90-1) \times 8 !}{89} \\\\ &= \dfrac{89 \times 8 !}{89} \\\\ &= 8 !\\\\ \text { (d) } & \quad \dfrac{10 !-9 !}{9} \\\\ &= \dfrac{10 \times 9 !-9 !}{9} \\\\ &= \dfrac{(10-1) 9 !}{9} \\\\ &= \dfrac{9 \times 9 !}{9} \\\\ &= 9 !\\\\ \text { (e) } & \quad \dfrac{6 !+5 !-4 !}{4 !} \\\\ &= \dfrac{6 \times 5 \times 4 !+5 \times 4 !-4 !}{4 !} \\\\ &= \dfrac{(30+5-1) 4 !}{4 !} \\\\ &= 34\\\\ \text { (f) } & \quad \dfrac{n !+(n-1) !}{(n-1) !} \\\\ &=\dfrac{n(n-1) !+(n-1) !}{(n-1) !} \\\\ &=\dfrac{(n+1)(n-1) !}{(n-1) !} \\\\ &=n+1\\\\ \text { (g) } & \quad \dfrac{n !-(n-1) !}{n-1} \\\\ &=\dfrac{n(n-1) !-(n-1) !}{n-1} \\\\ &=\dfrac{(n-1)(n-1) !}{n-1} \\\\ &=(n-1) !\\\\ \text { (h) } & \quad \dfrac{(n+2) !+(n+1) !}{n+3} \\\\ &= \dfrac{(n+2)(n+1) !+(n+1) !}{n+3} \\\\ &= \dfrac{(n+2+1)(n+1) !}{n+3} \\\\ &= \dfrac{(n+3)(n+1) !}{n+3} \\\\ &=(n+1) ! \end{aligned}$ |
---|
Subscribe to:
Posts (Atom)