Basic Trigonometric Identities
   $\begin{array}{|l|} \hline  \sin A=\displaystyle \frac{1}{\csc A}\ \text{and}\\ \csc A=\displaystyle \frac{1}{\sin A}\\ \cos A=\displaystyle \frac{1}{\sec A}\ \text{and}\\ \sec A=\displaystyle \frac{1}{\cos A}\\ \tan A=\displaystyle \frac{\sin A}{\cos A}\\ \tan A=\displaystyle \frac{1}{\cot A}\ \text{and}\\  \cot A=\displaystyle \frac{1}{\tan A}\\ \cot A=\displaystyle \frac{\cos A}{\sin A}\\ \hline\end{array}$ 
   
Pythagorean Identities
  $\begin{array}{|l|} \hline \sin^2 A+ \cos^2 A=1\\ \tan^2 A+ 1=\sec^2 A\\ 1+ \cot^2 A=\csc^2 A\\ \hline\end{array}$ 
   
        Trigonometric Ratios of Complementary Angles
  $\begin{array}{|l|}\hline  \sin \left(90^{\circ}-\alpha\right)=\cos \alpha\\ \cos \left(90^{\circ}-\alpha\right)=\sin \alpha\\ \tan \left(90^{\circ}-\alpha\right)=\cot \alpha\\ \cot \left(90^{\circ}-\alpha\right)=\tan \alpha\\ \sec \left(90^{\circ}-\alpha\right)=\csc \alpha\\ \csc \left(90^{\circ}-\alpha\right)=\sec \alpha\\ \hline \end{array}$ 
Prove the following identities.
   
  
 
     
  
 
                 
    
 
           
  
 
           
  
 
       
     
 
                      
    
 
                      
  
 
            
  
 
          
  
 
         
     
 
          
       
 
           
  
 
             
   
 
                
      
 
           
(a) $\cos 2 \alpha=\sin 7 \alpha$
(b) $\tan 3 \alpha=\cot 2 \alpha$
(c) $\sec \alpha=\csc 5 \alpha$
     
 
        
   
 
   
     
 
   
Prove the following identities.
 1.          	  $\cot \theta \sqrt{1-\cos ^{2} \theta}=\cos \theta$  
Show/Hide Solution
 2.           $\displaystyle \frac{\tan ^{2} \theta+1}{\tan \theta \csc ^{2} \theta}=\tan \theta$ 
Show/Hide Solution
 3.            $\left(1-\sin ^{2} \theta\right)\left(1+\cot ^{2} \theta\right)=\cot ^{2} \theta$  
Show/Hide Solution
 4.            $\tan ^{2} \theta-\cot ^{2} \theta=\sec ^{2} \theta-\csc ^{2} \theta$ 
Show/Hide Solution
 5.          			 $\sin \theta \sec \theta \sqrt{\csc ^{2} \theta-1}=1$ 
Show/Hide Solution
 6.            $16 \sec ^{2} \theta+\csc ^{2} \theta=\sec ^{2} \theta \csc ^{2} \theta$  
Show/Hide Solution
 7.           $\left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right)=1$ 
Show/Hide Solution
 8.           $(1+\tan \theta)^{2}+(1-\tan \theta)^{2}=2 \sec ^{2} \theta$  
Show/Hide Solution
 9.           $\sec ^{2} \theta \cot ^{2} \theta-1=\cot ^{2} \theta$ 
Show/Hide Solution
 10.           $\displaystyle \frac{1}{1-\sin \theta}+\displaystyle \frac{1}{1+\sin \theta}=2 \sec ^{2} \theta$ 
Show/Hide Solution
 11.           $\displaystyle \frac{1}{\sin ^{2} \theta}-\displaystyle \frac{1}{\tan ^{2} \theta}=1$ 
Show/Hide Solution
 12.           $(\tan \theta+\sec \theta)^{2}=\displaystyle \frac{1+\sin \theta}{1-\sin \theta}$ 
Show/Hide Solution
 13.           $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$ 
Show/Hide Solution
 14.           $\displaystyle \frac{\tan ^{2} \theta+1}{\tan ^{2} \theta}=\csc ^{2} \theta$ 
Show/Hide Solution
 15.           $\sin ^{2} \theta \tan \theta+\cos ^{2} \theta \cot \theta+2 \sin \theta \cos \theta=\tan \theta+\cot \theta$ 
Show/Hide Solution
 16.           Find the value of acute angle $\alpha$ in each of the following equations: 
(a) $\cos 2 \alpha=\sin 7 \alpha$
(b) $\tan 3 \alpha=\cot 2 \alpha$
(c) $\sec \alpha=\csc 5 \alpha$
Show/Hide Solution
 17.           Prove the identity $\cos \left(90^{\circ}-\alpha\right) \tan \left(90^{\circ}-\alpha\right)=\cos \alpha$ 
Show/Hide Solution
 18.           Prove the identity $\sin \left(90^{\circ}-\alpha\right) \sec \left(90^{\circ}-\alpha\right)=\cot \alpha$ 
Show/Hide Solution
 

 
 
 
 
 
 
 
 
 
 
0 Reviews:
إرسال تعليق